
www.manaraa.com

University of Iowa University of Iowa 

Iowa Research Online Iowa Research Online 

Theses and Dissertations 

Fall 2009 

Experimental investigation of free dendritic growth of Experimental investigation of free dendritic growth of 

succinonitrile-acetone alloys succinonitrile-acetone alloys 

Antonio Jose Melendez Ramirez 
University of Iowa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Mechanical Engineering Commons 

Copyright 2009 Antonio Jose Melendez Ramirez 

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/407 

Recommended Citation Recommended Citation 
Melendez Ramirez, Antonio Jose. "Experimental investigation of free dendritic growth of succinonitrile-
acetone alloys." PhD (Doctor of Philosophy) thesis, University of Iowa, 2009. 
https://doi.org/10.17077/etd.6unq0b8c 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Mechanical Engineering Commons 

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.6unq0b8c
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F407&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

1 

EXPERIMENTAL INVESTIGATION OF FREE DENDRITIC GROWTH OF 

SUCCINONITRILE-ACETONE ALLOYS 

by 

Antonio Jose Melendez Ramirez 

An Abstract 

Of a thesis submitted in partial fulfillment 
of the requirements for the Doctor of 

Philosophy degree in Mechanical Engineering 
in the Graduate College of 

The University of Iowa 

December 2009 

Thesis Supervisor:  Professor Christoph Beckermann 
 

 



www.manaraa.com

 

 

1 

1 

ABSTRACT 

Measurements are carried out for dendrite tip growth of succinonitrile-acetone 

alloys solidifying freely in an undercooled melt. The current experimental investigation is 

conducted using the equiaxed dendritic solidification experiment (EDSE). This setup 

allows for precise measurements of the dendrite tip velocity, radius and shape for a range 

of undercoolings and solute concentrations. The collected data are compared to available 

theories of free dendritic growth, such as the Lipton-Glicksman-Kurz and Li-Beckermann 

models. It is found that for dilute succinonitrile-acetone alloys, the measured dendrite tip 

Péclet numbers agree well with previous theories of free dendritic growth, if the effects 

of melt convection are taken into account. The tip selection parameter deviates 

significantly from the pure succinonitrile value and is inversely related to the applied 

undercooling. Besides, the selection parameter shows no dependence on the solute 

concentration. These results are consistent with phase-field simulations and preceding 

experimental investigations. In addition, scaling relationships for the sidebranching shape 

were obtained in terms of the dendritic envelope, projection area and contour length. 

These new scaling relations agree well with previous measurements in pure succinonitrile 

dendrites by Li and Beckermann 
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ABSTRACT 

Measurements are carried out for dendrite tip growth of succinonitrile-acetone 

alloys solidifying freely in an undercooled melt. The current experimental investigation is 

conducted using the equiaxed dendritic solidification experiment (EDSE). This setup 

allows for precise measurements of the dendrite tip velocity, radius and shape for a range 

of undercoolings and solute concentrations. The collected data are compared to available 

theories of free dendritic growth, such as the Lipton-Glicksman-Kurz and Li-Beckermann 

models. It is found that for dilute succinonitrile-acetone alloys, the measured dendrite tip 

Péclet numbers agree well with previous theories of free dendritic growth, if the effects 

of melt convection are taken into account. The tip selection parameter deviates 

significantly from the pure succinonitrile value and is inversely related to the applied 

undercooling. Besides, the selection parameter shows no dependence on the solute 

concentration. These results are consistent with phase-field simulations and preceding 

experimental investigations. In addition, scaling relationships for the sidebranching shape 

were obtained in terms of the dendritic envelope, projection area and contour length. 

These new scaling relations agree well with previous measurements in pure succinonitrile 

dendrites by Li and Beckermann.  
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CHAPTER I 

INTRODUCTION 

1.1 Background and Motivation 

Dendrites are the most abundant micro-structural feature in metal castings. These 

crystals resemble trees with different levels of branching (Figure 1.1), which facilitate the 

transport of latent heat and solute from the solid to the undercooled liquid. Since the 

redistribution of latent heat and solute determines the formation of the microstructure, 

which directly affects the physical and chemical properties of casting material a thorough 

understanding of free dendritic growth is necessary. Moreover, the state of the art in 

microstructure simulation involves modeling the interplay of two very complex physical 

phenomena: the phase transformation kinetics and the macro-transport of energy and 

species [109]. The understanding of free dendritic growth plays a key role in modeling 

both. On one hand, most deterministic models of phase transformation kinetic are based 

on dendritic growth laws. On the other hand, the permeability of the solidifying metal, 

which affects the formation of macrosegregation features during solidification, is 

determined by the dendritic sidebranching or arm-spacing. Consequently, free dendritic 

growth remains an important research topic in physics, metallurgy, materials science and 

engineering. 

Most deterministic theories and models for free dendritic growth are related in 

some way to the Ivantsov’s solution [53]. This Russian scientist solved analytically the 

solidification problem for pure materials around a paraboloid of revolution in the absence 

of capillary and kinetics effects. Because of that, the transport solution of Ivantsov can 

only predict the product of dendrite tip velocity and radius, or Peclet number, for a 

specified undercooling. In reality, dendrites are far from being branchless (Figure 1.1) 

and they select unique values of tip velocity and radius for every given undercooling. 
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Additionally, dendritic crystals grow along preferential directions. All these characteristic 

features are caused by the anisotropy of the free surface energy. 

Numerous research initiatives have been undertaken in order to consider capillary 

effects during dendritic solidification. Such efforts have resulted in selection criteria that 

uniquely determine tip velocity ( )V  and radius ( )ρ . Most proposed criteria are based on 

the selection parameter ( )( )2/1* ρσ V∝ , which accounts for the competition between heat 

diffusion and capillary effects. The microscopic solvability theory (MST) proposed by 

Brener [16-17] considers that the selection parameter is a material-dependent constant. 

Furthermore, the selection constant is determined exclusively by the anisotropy’s strength 

of the free surface energy. The MST also quantifies the deviation of the dendrite tip from 

Ivantsov paraboloid through a harmonics expansion. The coefficient corresponding to the 

first non-axisymmetric harmonic ( )4A  is considered as a measure of the anisotropy of the 

dendrite tip shape, and it is expected to be a universal constant. Experimental studies with 

pure succinonitrile by Glicksman and coworkers [69] validate partially the MST (Figure 

1.2). These authors found a weak dependence between the selection parameter and the 

undercooling. In the case of 4A , the measured values were about half of theoretical 

predictions. Numerical simulations, such as those by Karma et al. [59-60] using the phase 

field method, also show that the dendrite’s shape is universal and support the MST. 

During free dendritic growth of alloys, both latent heat release and solute 

rejection tend to destabilize the interface. On one hand, these combined effects reduce the 

tip radius and increase the tip velocity. On the other hand, the much smaller diffusion rate 

of solute compared to heat retards the growth. The competition between heat and solute 

transport causes a maximum in the dendrite velocity at small solute concentrations. A 

model for stationary free dendritic growth of alloys was proposed by Lipton, Glicksman 

and Kurz [87-89]. In the LGK model, the total undercooling results from the 

superposition of the thermal, solutal and capillary contributions. In addition, dendrites are 

considered paraboloids of revolution or branchless needle crystals, and the Ivantsov 
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solution is employed to account for both heat and mass transport. The marginal stability 

theory is used to determine the operating tip velocity and radius. Currently, the LGK 

model is extensively used to study free dendritic growth of alloys. 

Li and Beckermann [84] modified the LGK model in order to consider the effects 

of thermosolutal convection. They compared the predictions of their new LB model and 

the LGK theory to experimental data of Chopra et al. [23]. Such experiments were 

performed on a succinonitrile-acetone (SCN-ACE) transparent alloy system. These 

authors [84] found reasonable agreement between Chopra’s experiments [23] and the 

studied models for solute concentrations below 0.1% mol. Above 0.1% mol, none of the 

models were completely validated. Furthermore, the selection parameter is not constant 

along the entire range of studied undercoolings (Figure 1.3). Li and Beckermann [84] 

concluded that convection cannot cause these disagreements because the observed trends 

are independent of the undercooling and they are not mitigated by increments in the 

solute concentration. These findings question both the models of free dendritic growth for 

alloys and the consistency of the experimental data reported by Chopra and coworkers 

[23]. 

Recently, Rebow and Browne [104] studied the influence of the selection constant 

on the models of columnar-dendritic growth solidification and the criteria of columnar to 

equiaxed transition. They concluded that these models have a strong dependence on the 

selection parameter. Similarly, Kraft et al. [70] showed that microsegregation predictions 

for alloys with small freezing range rely greatly on the selection constant. In addition, the 

selection constant plays a key role in models of solidification such as cellular-automaton, 

front-tracking methods and multiphase volume-averaging formulations.  Consequently, it 

is worthwhile to further validate the existing models for free dendritic growth of alloys or 

to develop new models. In order to achieve that goal, new experimental benchmarks for 

free dendritic growth of alloys are required. 
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1.2 Aim of the Current Research 

The goal of the present research is to provide new experimental benchmarks for 

succinonitrile-acetone alloys. These new data will be helpful for development of new 

theoretical models and for validating the existing models and numerical simulations of 

free dendritic growth in alloys. Specifically, new and more complete benchmarks will 

allow further investigation and development of the MST and dendritic growth theories for 

alloys.  
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Figure 1.1: Micrographs of dendrites 
 (a) Pure succinonitrile. 
 (b) Cobalt-Samarium-Copper alloy [39] 
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Figure 1.2: Validation of the theories of dendritic growth for pure substances [69]. 
 (a) Verification of the transport model. 
 (b) Verification of the selection criterion. 
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Figure 1.3: Validation of the theories for dendritic growth in alloys by Chopra et al. [23]. 
 (a) Verification of the transport model. 
 (b) Verification of the selection criterion. 
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CHAPTER II 

 LITERATURE REVIEW 

2.1 Introduction 

Dendrites are the predominant microstructure in metal castings. Their 

characteristic length scales, such as tip radius, and primary and secondary arm spacings, 

determine the properties of the casting materials. Consequently, extensive research has 

been devoted to dendritic growth during the last sixty years. Important contributions have 

been made through theoretical, numerical, and experimental studies. Historically, 

dendritic growth has been considered as a coupling of steady-state movement of the tip 

and transient formation of sidebranches behind the tip.  Each of these mechanisms has 

been studied separately and most investigations have been aimed at the stationary 

propagation of the dendrite tip. The following sections provide a brief overview of the 

literature concerning theoretical, experimental, and numeric investigations of the steady-

state propagation of the dendrite tip. 

Dendritic growth can occur in two different scenarios, depending on how the 

latent heat of fusion is removed from the interface. If the latent heat is dissipated through 

the liquid, the growth is considered free. Conversely, the latent heat is evacuated across 

the solid during constrained growth. This review will be focused on free dendritic 

growth. 

2.2 Free dendritic growth 

When the latent heat flows in the growth direction, the solidification front is 

unstable under morphological perturbations (Fig. 2.1). Since solid nuclei are surrounded 

by undercooled liquid, there is no temperature gradient across the solid. Consequently, 

removal of the latent heat of fusion depends only on the liquid temperature gradient at the 

interface. Any perturbation makes the liquid temperature gradient steeper on the interface 
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peaks. The opposite behavior is observed on the interface valleys. Therefore, interface 

peaks can release more latent heat and grow faster. This condition favors the formation of 

equiaxed dendrites.  

2.2.1 Mathematical formulation 

Free dendritic growth can be described by solving transport equations for mass, 

momentum, energy, and species for both liquid and solid phases. Interfacial phenomena 

are considered through the boundary conditions. Depending on the solving approach, the 

governing equations are modified or simplified accordingly. The discussion of each 

solving methodology is beyond the scope of this review. Instead, some general and 

simple formulations for alloys are presented here. Governing equations for a pure 

substance can be obtained by simplifying the formulation presented for alloys. 

Historically, only diffusive phenomena were considered initially in the study of free 

dendritic growth. However, the importance of convective transport in the liquid phase 

was recognized and considered in posterior studies. Mathematical formulations for 

diffusive and diffusive-convective free dendritic growths are presented in the next 

subsections. Additionally, the Ivantsov solution is discussed in the last subsection 

because it is the foundation for theories of free dendritic growth. 

2.2.1.1 Diffusion-controlled formulation 

When there is no flow in the liquid, the free dendritic growth or equiaxed 

solidification can be described using the transport equations of mass and species for each 

phase.  Assuming the densities of both phases are equal, the following set of equations is 

obtained: 

  (2.1) lllt TT ∇=∂ α 2

2

2

  (2.2) ssst TT ∇=∂ α

  (2.3) lllt CDC ∇=∂
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  (2.4) ssst CDC ∇=∂ 2

VΓmCTT

with the corresponding set of boundary conditions: 

 knlMl κ μ/−−+=

TkTkVL ∂−∂=

                      (Gibbs-Thomson condition) (2.5) 

 lnlsnsnfρ                               (Stefan condition) (2.6) 

( ) ( )CDCDVkC lnlsnsnl ∂−∂=− ρ1         (Species balance at the interface) (2.7) ρ

where lα  is the liquid thermal diffusivity,  is the temperature field in the liquid, lT sα  is 

the solid thermal diffusivity,  is the temperature field in the solid,  is the solutal 

diffusivity in the liquid,  is the mole fraction of solute in the liquid,  is the solutal 

diffusivity in the solid,  is the mole fraction of solute in the solid, TM is the melting 

point of pure solvent, m is the liquidus slope of the dilute alloy phase diagram,  is the 

Gibbs-Thomson coefficient, 

sT lD

lC sD

sC

Γ

κ  is the local curvature of the interface,  is the normal 

velocity of the interface, 

nV

kμ  is the kinetic coefficient, ρ  is the density of the working 

material, is the latent heat per unit mass,  is the solid thermal conductivity,  is the 

liquid thermal conductivity and k  is the partition coefficient. 

fL sk lk

The Gibbs-Thomson condition requires a closer examination. The formulation 

presented in Equation (2.5), although correct and well-known, buries the mechanism that 

causes dendrites formation. Let us consider a more rigorous form of the Gibbs-Thomson 

condition: 

 ( ) ( )
( )n

V
mC

R
nn

L
T

TT
k

n
l

i iif

M
Ml ˆ

1ˆˆ
2,1

2

2

μθ
γγ −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+−= ∑
=

 (2.8) 

where )ˆ(nγ  is the excess free-energy of the solid-liquid interface, iθ  are the azimuth and 

elevation angles measured among the normal to the interface  and the two principal 

directions on the interface,  are the principal curvature radii,  is the normal velocity 

of the interface, and 

n̂

iR nV

( )nk ˆμ  stands for the kinetic coefficient. The term between 
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parentheses is called the interface stiffness, and it quantifies the opposition of the 

interface to be deformed. Both the excess free-energy of the interface and the kinetics 

coefficient are direction-dependent, or anisotropic, properties. Moreover, the anisotropy 

in the excess free-energy of the interface tends to maximize the kinetics coefficient while 

minimizing the interface stiffness. Because of that, the materials grow along preferred 

directions in order to minimize the area of the interface on those regions with the highest 

excess free-energy of the interface. Besides, the velocity of the dendrite tip is also 

determined by the anisotropy of the thermodynamic and kinetic properties.  

For rough solid-liquid interfaces, the anisotropy of the excess free-energy has a 

magnitude around 1-2 %. Despite this small magnitude, the anisotropy of the excess free-

energy rules the physical phenomena behind the dendrite formation. Consequently, the 

anisotropy of the excess free-energy is considered a singular perturbation of the 

solidification problem. The relationship between the interface stiffness and the interfacial 

excess energy, the bracket in eqn. 2.8, explains to some degree how the anisotropy of the 

interfacial excess free-energy has such a strong influence on the solidification problem. 

The interface stiffness’s anisotropy is more than one order of magnitude bigger than the 

anisotropy in the interfacial excess free-energy [49]. 

The free dendritic growth remains a challenging research topic because the length 

scales that control this phenomenon are several orders of magnitude apart. Typically, the 

dendrite tip radii, observed experimentally, are on the order of microns. The actual 

interface thickness is on the order of nanometers according to molecular simulations. 

Finally, the macro-transport of energy and species ahead of the dendrite is controlled by a 

length scale on the order of hundreds of microns. Consequently, advances in new 

multiscale theoretical and numerical methods, new experimental techniques and more 

powerful computer are needed to increase the understanding of the free dendritic growth 

phenomena. 
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2.2.1.2 Convective-diffusive formulation 

In order to study convective effects, the transport equations of mass, momentum, 

energy and species need to be solved for the liquid phase. Generally, the liquid is 

considered incompressible, and the solid is assumed rigid. Consequently, only transport 

of energy and species are considered in the solid phase. Moreover, diffusion is the only 

mechanism driving transport of energy and species inside the solid. Under these 

assumptions, the set of governing equations is reduced as follows: 

  (2.8) 0l =⋅∇ u

2

2

2

2

2

VΓmCTT

  (2.9) llll uuuu ∇+−∇=⋅∇+∂ llllt p μρρ

  (2.10) llllt TTT ∇=⋅∇+∂ αlu

  (2.11) sss TT ∇=∂ αt

  (2.12) llllt CDCC ∇=⋅∇+∂ lu

  (2.13) sss CDC ∇=∂ t

with the corresponding set of boundary conditions: 

 knlMl κ μ/−−+=

TkTkVL ∂−∂=

                      (Gibbs-Thomson condition) (2.14) 

 lnlsnsnfsρ                           (Stefan condition) (2.15) 

( ) CDCDVkC lnllsnssnls ∂−∂=− ρρ1     (Species balance at the interface) (2.16) ρ

where  is the liquid velocity, lu lρ  is the liquid density,  is the pressure in the liquid, lp

lμ  is the dynamic viscosity of the liquid, lα  is the liquid thermal diffusivity,  is the 

temperature field in the liquid,  

lT

sα  is the solid thermal diffusivity,  is the temperature 

field in the solid,  is the solutal diffusivity in the liquid,  is the mole fraction of 

solute in the liquid,  is the solutal diffusivity in the solid,  is the mole fraction of 

solute in the solid, TM is the melting point of pure solvent, m is the liquidus slope of the 

sT

lD lC

sD sC
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dilute alloy phase diagram, is the Gibbs-Thomson coefficient, Γ κ  is the local curvature 

of the interface,  is the normal velocity of the interface, nV kμ  is the kinetic coefficient, 

sρ  is the solid density, is the latent heat per unit mass,  is the solid thermal 

conductivity,  is the liquid thermal conductivity and  is the partition coefficient. 

fL sk

lk k

2.2.1.3 Ivantsov solution 

In 1935, Papapetrou [99] introduced the notion that dendrites can be 

approximated by a paraboloid of revolution. Moreover, he proved the existence of 

solutions for the dendrite problem around this shape. However, the solution itself was 

found by Ivantsov [53] twelve years later. In 1961, Horvay and Cahn [47] generalized the 

Ivantsov analysis using separation of variables. Recently, Dantzig and Rappaz [27] 

reviewed the solidification problem around a paraboloid following the approach of 

Horvay and Cahn rewriting its solution in terms of the Stefan and Peclet number. This 

section will describe the Ivantsov solution following roughly the same approach. 

 The starting point in the Ivantsov analysis is the diffusion-controlled formulation 

for a pure substance. Assuming the dendrite moves with constant velocity, the governing 

equations can be rewritten in stationary form using a moving reference frame attached to 

the dendrite. Such a coordinate system is illustrated in Figure 2.2a. The paraboloid 

surface in the new coordinate system is described by the following expression: 

 
R

rRz
22

−=
2

 (2.17) 

where 22 yxr +=  and R  is the tip radius. Neglecting kinetics and capillary effects at 

the interface and assuming the melt infinite, the governing equations are simplified as 

follows:  

  (2.18) lllz TTV 2∇=∂− α

  (2.19) sssz TTV ∇=∂− α 2
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                               (Gibbs-Thomson condition) (2.20) fsl TTT ==

TkTkVL ∂−∂= lnlsnsfρ             (Stefan condition) (2.21) 

                                       (Far away of the interface) (2.22) ∞l = TT

A uniform temperature field inside the solid ( fs TT = ) satisfies Equations (2.18) 

and (2.19). Now, only the temperature distribution in the liquid is missing. At this point, 

it is convenient to scale the remaining governing equations. The proposed scaled 

quantities are:  

 
∞

∞

−
−

===
TT

θ
ρρ

ς
f

l
l     ;     ; χ TTrz  (2.22) 

The interface is described in terms of the scaled variables by the following 

expression: 

 ( 21
2

χ−=ς )1

2

=

 (2.23) 

The governing equations for the liquid are expressed in terms of the scaled 

variables as follows: 

                    (In the proximity of the interface) (2.24) llT θPe2 ∇=∂− θς

 1lθ                                         (At the interface) (2.25) 

 0=lθ                                        (Far away of the interface) (2.26) 

 ln
T

Ste
θ−∂=

Pe2  (2.27) 

here αρ 2VPeT =  and ( ) ffL LTTcSte ∞−=  represent the thermal Peclet and Stefan 

numbers, respectively. In the definition of the Stefan number, the symbol  stands for 

the specific heat at constant pressure for the liquid. 

lc
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A transformation to the paraboloidal coordinates ( ηξ , ) conforming the solid 

makes all boundary conditions and the final solution independent of η . Such 

transformation is given by:  

( ) 2221     ; ηξχξη −==ς  (2.28) 

 222222      ; ςχςηςχςξ ++−=++=  (2.29) 

 The new coordinate system is presented in Figure 2.2a. Finally, the temperature 

profile in the liquid is given by: 

[ ]
[ ] 1         with 

1

1 ≥= ξξθ
T

T
l PeE

PeE 2

∞

 (2.30)  

here  is the exponential integral function defined by:  1E

  (2.31) ( ) ∫ −−=
ξ

ξ dzezE z1
1

Substituting the temperature of the liquid lθ  on the Stefan condition, using the 

properties of the exponential integral function and evaluating 1=ξ , the Ivantsov solution 

is obtained: 

  (2.32) ( ) ( TTT PeEPePeSte 1exp= )

The right side of Equation 2.32 is called the Ivantsov function ( ). Equation 

2.32 can be presented in terms of the dimensional undercooling: 

( )Iv

 ( ) ( ) ( ) ( ) ( )TTTLfTLf PeEPePecLPeIvcLT 1exp==Δ  (2.33) 

The set of assumptions proposed by Ivantsov overconstrains the solidification 

problem by neglecting the surface tension on the boundary conditions. As a result, the 

transport solution of Ivantsov can only predict the product of dendrite tip velocity (V ) 
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and radius ( R ) for given undercooling ( TΔ ). Actually, dendrites choose unique values of 

tip velocity and radius for a given undercooling. In spite of this drawback, the Ivantsov 

solution has played a key role in the study of free dendritic growth. It is used to model the 

heat and mass transport around dendrites in most theories of free dendritic growth.  

2.2.2 Theory of dendritic growth for pure substances 

 Most theories of free dendritic growth have two components. The first part is a 

model for transport phenomena around dendrites generally based on the Ivantsov 

solution. The second portion is a selection criterion, which assists the transport model in 

determining the operation conditions (V  and R ) of the dendrite tip. Extensive research 

has been done to develop selection criteria. However, none of the proposed criteria are 

able to match all experimental observations available. Among the existing selection 

criteria, the microscopic solvability theory (MST) is the most widely accepted because of 

its rigorous mathematical foundations and its extensive validation through numerical 

simulations. The MST proposes that the selection parameter ( )*σ  depends uniquely on 

the anisotropy of the excess free surface energy ( )γ . Unfortunately, the measurement of 

the excess free surface energy and its anisotropy has been a very challenging endeavor 

thus far. For this reason, the experimental validation of the MST is lacking. 

2.2.2.1 Microscopic solvability theory (MST) 

In order to consider anisotropic capillary effects, Brener [16-17] proposed the 

three-dimensional MST using the method of asymptotic expansions beyond all orders. In 

the MST, the singularities of a non-axisymmetric shape deviation from the Ivantsov 

paraboloid are mapped in the complex plane. Around these singular points, a pseudo 

boundary layer equation is formulated. The solvability condition for this equation 

constitutes the selection criterion for the dendrite velocity and shape. So far, the MST has 
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been focused on materials with fourfold- and sixfold-symmetry. In the three-dimensional 

case, the surface energy of this type of materials is considered to be given by: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +++= ϕθθθεϕθγ 4cossin

4
1sin

4
3cos41, 444  (2.34) 

where θ  and ϕ  are the Eulerian angles of  the interface normal vector, and ε  is the 

strength of the anisotropy. The non-axisymmetric shape (Figure 2.3) studied by Ben 

Amar and Brener is the following: 

 
{

(
44 344 21

Correction        
icaxisymmetrNon

Paraboloid
Ivantsov  

2

cos
2

−

∑+−= φmrArz m
m ) (2.35) 

where r  and φ  are polar coordinates in the plane perpendicular to the growth direction. 

Additionally, the axial  and radial ( )z ( )r  coordinates have been scaled using the tip 

radius . Equation 2.35 is valid only in the immediate proximity of the tip radius 

because the harmonics  grow faster than the Ivantsov paraboloid. Following 

the approach proposed by Kessler and Levine [63-64], Ben Amar and Brener [9] 

considered only the first non-axisymmetric harmonic 

( )R

( φmr m cos )

( )φ4cos4r  and found from the 

solvability condition that the selection parameter *σ  and coefficient   are pure 

numbers given by: 

4A

 47
0* εσσ =  (2.36) 

 881=A4  (2.37) 

where 0σ  is an unit constant. Brener and Melnikov [18] revised and extended the MST, 

considering non-stationary perturbations of the dendrite tip. They found a slightly 

different value for : 4A

 9614 =A  (2.38) 
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The MST also describes the dendrite’s tail or sidebranching. Brener [16-17] 

obtained a model for the tail’s shape by considering the two-dimensional, transient 

movement of the dendrite’s cross section. The Laplace equation governs such motion if 

the tail’s cross sectional area is much smaller than the thermal diffusion length. Algrem et 

al. [1] found the solution for two-dimensional Laplacian problems while studying 

anisotropic Hele Shaw flow. Using Algrem’s findings, Brener proposed the following 

tail’s shape in terms of the sidearms’ width ( )wY : 

 ∫
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

1

/
43/2

3/25/1

2

5/2

1*
*

3
5

actXXact

w

ss

ds
X
X

R
Z

R
Y

σ
σ  (2.39) 

where R  represents the tip radius,  stand for the reference coordinates 

(Cartesian), 

),,( ZYX

*σ  is the selection parameter for the dendrite’s tip, and *2σ  corresponds to 

the selection parameter for the tip of active sidebranches. Brener also stated that the 

distance form the growth axis to the tip of the active sidebranches ( )actX  is given by: 

 
5/1

2

5/3

*
*

3
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

σ
σ

R
Z

R
X act  (2.40) 

In general, the selection parameters ( *σ , *2σ ) are assumed equal. It is important 

to note that the tail’s shape presented above does not consider the effects of the thermal 

noise on the sidebranching. Brener and Temkin [20] studied the time-dependent behavior 

of the sidebranching using the non-axisymmetrical shape of the needle crystal. These 

authors found that the thermal noise waves generated at the dendrite tip increase their 

amplitude while they move down the dendrite’s sides creating sidebranches. Furthermore, 

the thermal noise is amplified exponentially as a function of ( ) ( ) 2/15/2 *σRZ . This 

result shows a better agreement with sidebranching’s measurements than predictions 

based on axisymmetrical shapes. Brener and Temkin also investigated the behavior of the 

sidearms in the non-linear regime ( )TPeRZ 11 <<<< , where the sidebranches do not 
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behave as free dendrites yet. In this region, the competition among the sidearms creates a 

spacing of the surviving sidebranches ( )sλ  that is proportional to their length . All 

scaling relations derived by Brener and Temkin can be summarized as follows: 

( )sl

 ( ) ( ) ( ) RZRZsRZlRZ ss ~~~λ  (2.41) 

where  stands for the cross sectional area of sidebranching. Such relationships imply 

that the sidearms inside the non-linear region can be modeled using geometrical, 

undercooling-independent parameters that can be scaled by the tip radius. 

s

Since the MST theory accounts for the anisotropy of interfacial energy, it 

addresses the fact that dendrites grow in preferential directions. Consequently, more 

realistic predictions are expected from this theory. In fact, phase-field simulations [58-60, 

101,123] and an experimental investigations [90] agree quantitatively with MST. 

However, recent atomistic simulations of fcc∗ metallic materials [46-48] have shown that 

at least two parameters are required to accurately describe the anisotropy of the free 

surface area: 

 ( ) ( ) ( )[ ]ϕθεϕθεγϕθγ ,,1, 22110 KK ++=  (2.42) 

where θ  and ϕ  are the Eulerian angles of  the interface normal vector, 0γ  stands for the 

orientation-averaged interfacial free energy, 1ε  and 2ε  correspond to the strength of the 

four- and six-folds anisotropy cubic-harmonics ( )21  & KK , respectively. Furthermore, 

new solvability theory calculations and phase field simulations [46] for free dendritic 

growth indicates that the selection parameter *σ  depends acutely on both 1ε  and 2ε . In 

light of these new findings, a re-examination of the microscopic solvability theory for 

alloys is needed. 

                                                 
∗ Face-centered cubic 
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2.2.3 Models for dendritic growth for alloys 

Since the solids have crystalline structures, they have less internal free space to 

accommodate solute molecules. Consequently, the solubility of alloys is higher in liquids 

than in solids (Fig 2.4). During dendritic solidification of alloys, solute and latent heat are 

rejected from the solid into the liquid. The interplay between latent heat release and 

solute rejection is very complex, but both phenomena tend to destabilize the interface. On 

one hand, these combined effects reduce the tip radius and increase the tip velocity in 

comparison to pure substance at the same undercooling. On the other hand, the much 

smaller diffusion rate of solute compared to heat retards the growth. The competition 

between heat and solute transport causes a maximum in the dendrite velocity at small 

solute concentrations. This behavior is predicted qualitatively by most theories of 

dendritic growth for alloys. It also was documented in the experimental study of 

succinonitrile-acetone alloys by Chopra et al. [23]. 

Most theoretical models for free dendritic growth of alloys predict the steady state 

tip velocity and radius for a given undercooling and solute concentration. These models 

consider that the total undercooling ( )TΔ  results from the superposition of the thermal 

, solutal  and capillary ( TΔ ) )( CΔ ( )RΔ  contributions (Fig. 2.5). Dendrites are considered 

paraboloids of revolution or branchless needle crystals in these models. Consequently, 

the Ivantsov function is employed to account for both heat and mass transfer. The 

marginal-stability theory is the most frequently used selection criterion. Currently, the 

Lipton-Glicksman-Kurz (LGK) model [87-88] is the most extensively used for free 

dendritic growth of alloys. In the next subsections, the most accepted theories of dendritic 

growth for pure substance are reviewed. 

2.2.3.1 Lipton-Glickman-Kurz (LGK) model 

The LGK theory assumes that thermal and solutal transport at the tip of the 

dendrite of a dilute binary alloy occurs with constant partitions coefficient k and a 
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liquidus line of constant slope m. For tri-dimensional parabolic dendrites, neglecting the 

kinetic effects, the total imposed undercooling, TΔ  is given by 

 ( ) R
Γ

k
Tk

c
L

T
C

C
T

l

f 2
11

0 +
Δ−−

ΔΔ
+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Δ  (2.41) 

where on the right hand side, the three terms represent thermal, solutal, and capillary 

contributions to the total undercooling respectively,  is the latent heat of fusion,  is 

the specific heat of the liquid, 

fL lc

( ) kkCmT /10 −=Δ ∞  is the equilibrium freezing 

temperature range corresponding to  and ∞C Γ  is the Gibbs-Thomson coefficient. R  is 

the tip radius and is based on the assumption that the dendrite has a parabolic shape. One 

can notice that for a three-dimensional situation, where the dendrite assumes a paraboloid 

shape, the capillary contribution is given by R/2Γ . The dimensionless thermal and 

solutal undercoolings are defined as 

 ( T
lf

T PeIv
cL
TT

==Δ ∞

/
* )−

 (2.42) 

 ( ) ( CC PeIv
Ck

=
−

=Δ ∞

*1
* )CC −

 (2.43) 

where *T  and  are the temperature and solute concentration in the liquid and at the 

dendrite tip, respectively. 

*C

α2VRPeT =  and DVRPeC 2=  are the thermal and solutal 

Peclet numbers, α  is the thermal diffusivity and D is the liquid mass diffusivity. Notice 

that *T  and  are unknown. The dimensionless undercoolings are calculated from the 

Ivantsov solutions for the steady state heat and solute diffusion around a parabolic 

dendrite. Although the Ivantsov function solution assumes an isothermal interface, the 

capillary effect varies along the curvature of the interface, making it non-isothermal. 

However, the contribution of the capillary effect can only be considered as a first 

approximation. A thorough discussion of this issue was published by Trivedi [116-117]. 

*C
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After some algebra, the transport equation for the LGK model is rewritten as 

follows: 

 ( ) ( )
( ) ( ) R

C

C
T PeIvk

PeIvMc
PeIv Δ+

−−
+=Δ ∞

11
 (2.44) 

where ( ) ( )lf cLkmM //1−−=  is a scaled liquidus slope, ( ) RdLΓc flR /2/2 0==Δ ρ  is 

the dimensionless capillary undercooling and  is the capillary length. 0d

Equation 2.46 possesses two unknowns, namely the tip radius and velocity. 

Consequently, it only allows calculating the product . For this reason, the marginal-

stability criterion is employed to uniquely establish tip velocity and radius. Additionally, 

the definition of the selection constant is modified to account for thermal and solutal 

effects: 
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where *σ  is a selection parameter that is supposed to be independent of thermal 

undercooling and alloy composition [87-88].  

2.2.3.2 Lipton-Kurz-Trivedi (LKT) model 

The transport portion of this model is identical to its counterpart for the LGK 

model (Equation 2.44). The selection criterion for the LKT model was modified to 

account for large Peclet numbers [89]: 
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where the correction parameters Tξ  and Cξ  are given by: 
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2.2.3.3 Li-Beckermann (LB) model 

In order to consider the effects of both thermal and solutal convection, Li and 

Beckermann [84] modified the transport portion of the LGK model using a stagnant film 

model. For alloys, both thermal ( )Tδ  and solutal ( )Cδ  boundary layer thicknesses need to 

be included in the stagnant model: 

[( ) ( ) ( )]{ }RPeEPeEPePe /21exp TTTTTT 11 − + δ=Δ

( ) ( )

 (2.49)  

[ ( )]{ }RPeEPeEPePe /21exp CCCCCC 11 − + δ=Δ  (2.50) 

where  and  are the thermal and solutal undercooling, respectively and  is the 

exponential integral function (Equation 2.31). they estimated the boundary layer 

thicknesses using correlations for Nusselt ( ) and Sherwood ( ) numbers based on 

tip radius (

TΔ CΔ 1E

RNu RSh

R ): 

 RT NuBR // =δ  (2.51) 

 RC ShBR // =δ  (2.52) 

where B is a common constant for both boundary layers, and it is adopted as 2≈B . Li 

and Beckemann employed the following correlations for Nusselt and Sherwood: 
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here DPrScLe /α==  is the Lewis number. The buoyancy parameter  (Equation 

2.59) ponders interactions between boundary layers. Positive values of  mean 

cooperation between solutal and thermal effects. On the contrary, negative values of  

indicate competition between them. Previous correlations are valid only for alloys with 

positive buoyancy parameters ( ). The constant 

N

N

N

N A  is independent of Lewis number  

and , and it was estimated as 

Le

N 9.0≈A  following a boundary layer analysis. The 

preceding correlations are applicable for both vertical plates and spheres, and they do not 

include a diffusion limit for vanishing Raleigh number. Such consideration was done by 

Li and Beckermann through the modified Ivantsov function. 
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 (2.55)  

In Equation 2.55, Cβ  corresponds to solutal expansion coefficient, Tβ  represents 

the solutal expansion coefficient,  is the solute concentration at the dendrite tip,  

symbolizes the initial or far-field solute concentration,  represents the temperature at 

the dendrite tip, and  corresponds to the initial or far-field temperature. Finally, Li and 

Beckermann estimated the boundary layer thicknesses as follows:  

*C ∞C

*T

∞T

 ( )
4/1

4/1
, 1

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Le
NRa

A
B

R TR
Tδ  (2.56) 

 ( )
4/1−

4/1
, 1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

N
LeRa

A
B

R CR
Cδ  (2.57) 

The ratio 2.2≈AB  was verified by the authors of the current model comparing 

the predictions of the model with the earth-based dendritic growth experiments for pure 

SCN of Huang and Glicksman [50-51]. 

Finally, Li and Beckermann [84] compared the predictions of their model and the 

LGK theory with the experimental data of Chopra and co-workers [23]. Such 
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experiments were performed on a succinonitrile-acetone (SCN-ACE) transparent alloy 

system. A significant disagreement in the tip radius and velocity was found for melt 

concentrations  mol %. The selection parameter 1.0>∞c *σ , calculated with each pair of 

measured tip radius R  and velocity V, was not constant. It exhibited a strong scatter that 

has not been explained. Owing to the fact that the LGK model is still used extensively, 

more experiments and numerical studies are required to validate the existing theories of 

dendritic growth or to propose new models. 

2.2.4 Experimental studies of dendritic growth 

 Experimental observations play a key role in scientific development. They are 

useful not only for validation of model but for understanding the physical phenomena 

studied. In the case of free dendritic growth, experimental observation is rather 

complicated because metals and other casting material are opaque. The study of 

transparent analogous materials, such as succinonitrile and pivalic acid, has been the 

answer to that challenge. Nevertheless, the number of experimental benchmarks for free 

dendritic growth is very small. Only benchmarks of Koss et al. [69] for succinonitrile and 

LaCombe et al. [75] for pivalic acid are suitable for validating of dendritic growth 

theories for pure substances. In the case of alloys, only the data of Chopra et al. [23] is 

available. In general, experimental data for free dendritic growth validate partially the 

existing theories and models. Most validation studies indicate that convective and kinetic 

effects need to be considered in the theories of free dendritic growth. Also, more research 

is required to address the role of surface tension in free dendritic growth. In the next 

subsections the most important experimental contributions in the study of free dendritic 

growth are reviewed. 

2.2.4.1 Pure substances studies 

Huang and Glicksman [50-51] performed systematic measurements of dendrite tip 

radius and growth velocity for succinonitrile (SCN) with a purity of 99.99995 %. The 
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authors tested different dendritic theories under small undercoolings. They concluded that 

the Ivantsov solution models the heat transport correctly during dendritic growth. The 

deviations of the tip shape from Ivantsov paraboloid are essentially trivial. The stability 

criterion *σ  from the experiment was measured as 0.0195, which is in good agreement 

with the prediction of the marginal-stability criterion. For low undercoolings, *σ  rose 

slowly to about 0.025.  This suggests that the natural convection effects play a dominant 

role at these conditions. The authors also found the ratio of the tip radius R  and the 

marginally stable wavelength sλ  over the full range of undercoolings to be 1.2, which is 

only 20% above the value assumed by Langer and Müller-Krumbhaar [81-83].  

Glicksman and coworkers [38, 40-41, 68-69, 72-75, 101] proposed and conducted 

the so-called isothermal dendritic growth experiment (IDGE). In this research project, 

free dendritic growth of pure succinonitrile (SCN) and pivalic acid (PVA) was studied 

experimentally under microgravity and terrestrial conditions. The set of experiments with 

SCN was carried out first, and its results agreed reasonably with the Ivantsov solution 

and the theories of dendritic growth. In Figure 2.6a, the comparison of IDGE 

microgravity growth data for SCN with terrestrial experiments and diffusion theories is 

shown. Much better agreements are found between the microgravity results and the 

theories. However, the microgravity data for undercoolings lower than 0.47K deviate 

significantly from theory, indicating that even in microgravity conditions, the influence 

of natural convection is still significant. In addition, a slight dependence of *σ  on 

undercooling was found. Also, a good agreement between terrestrial and microgravity 

*σ  was observed. Glicksman et al. [69] also reported that the Ivantsov diffusion solution 

combined with a constant selection parameter fails to consistently predict growth velocity 

and radius. 

The shape of pure SCN dendrites was also studied by Glicksman and coworkers 

[73]. They used a fourth order polynomial to fit the dendrite contour and to measure . 

Furthermore, these authors adopted a fitting range of eight radii behind the tip.  The 

4A
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reported datum (   is roughly half the size of the MST prediction 

.  Surprisingly, the measured  almost matches the prediction obtained 

from simulations  by Karma et al. [58]. In general, the experiments with 

pure SCN validate the microscopic solvability theory.  

)
)

)

004.04 =A

( 0104.04 =A 4A

( 0045.04 =A

The IDGE data for pivalic acid (PVA), presented by Glicksman et al. [75], show 

strong disagreements with the theories of dendritic growth for pure substance. PVA 

dendrites cannot be represented by a paraboloid of revolution. The Peclet number 

predicted by the Ivantsov solution does not agree with the experimental data collected in 

microgravity conditions. Finally, the selection parameter shows a strong dependence on 

the undercooling for both terrestrial and microgravity conditions (Fig. 2.6b). These 

findings support previous experimental research on PVA done by Rubinstein and 

Glicksman [105], which also questions the theories of dendritic growth. The relatively 

high anisotropy ( ) of PVA has been pointed out as the probable cause of the 

disagreement with theories of dendritic growth. 

%52 −≈

Muschol et al. [96] measured the strength of the surface tension anisotropy for 

SCN and PVA. Then, they compared the predictions of the selection parameter by 

microscopic solvability theory (MST) to the experimental data available in the literature. 

They concluded that the existing data do not completely validate the MST (Fig. 2.7). 

They suggested that such disagreement might be caused by kinetic effects on the 

experiments, competition among dendrites during the experiments or oversimplifications 

in the model for material with fourfold-symmetry. 

2.2.4.2 Alloys studies 

As far as the free dendritic growth of binary alloys is concerned, Kahlweit [54] 

and Chan et al. [22] studied experimentally the dendritic growth of NH4Cl crystals in 

aqueous solutions. These works were mainly engaged with the observation that the 

protrusions or dendrite arms starting from a small spherical crystal along certain 
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directions were the only ones observable. The observed velocity and tip radius were 

never reported in these studies. 

Only the data of Chopra et al. [23] appears to be available for direct testing of free 

dendritic growth theory of alloys. At different undercoolings and solute concentrations, 

these authors measured the tip velocity and tip radius of equiaxed dendrites for two alloy 

systems, namely SCN-argon and SCN-acetone. The studies with SCN-argon were limited 

to very dilute cases because the authors were interested in the region in the phase diagram 

where the liquidus line has a fairly constant slope. The first quantitative description of the 

SCN-ACE system, including a partial phase diagram in the region of interest, was made 

by Chopra et al. The authors also found that the equilibrium partition coefficient remains 

constant at a value of 0.1 for acetone concentrations of up to 25 mol %.  

For SCN-acetone alloys, Chopra et al. [23] found that the dependence of tip 

velocity and radius on the undercooling for alloys, at constant compositions, is analogous 

to the trend observed for pure SCN dendrites. They also reported two different regimes of 

operation, one below a critical concentration of acetone (0.1% mol) governed by the heat 

transfer, and another above the critical concentration controlled by solute diffusion 

(Figure 2.8). Below the critical concentration the tip velocity increases with 

concentration. Above the critical concentration the opposite behavior occurs. Chopra et 

al. [23] also found a minimum for the tip radius at the critical concentration. This last 

finding contradicts the prediction of the LGK model. Chopra and coworkers argued that 

the disagreements with the LGK model were caused by lack of resolution in the 

measurement. Finally, a tip splitting instability was observed for the critical 

concentration. 

As mentioned before, the Chopra’s experimental benchmark for SCN-acetone 

[23] was reexamined by Li and Beckermann [84]. These authors found reasonable 

agreement between the Chopra’s experiments and the LGK and LB models for 

concentrations below the critical value (0.1% mol). Specifically, the LB model 
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reproduces the tip velocity and radius data of Chopra (Figure 2.8). The LGK predictions 

are up to a factor of four lower for the tip velocity and up to factor of two higher for the 

tip radius. The agreement in terms of the Peclet number and the selection parameter, at 

concentrations below the critical value, is good for both models. Above the critical 

concentration (0.1% mol), there are significant differences between both models and the 

experimental data (Figure 2.9). They [84] reported more important discrepancies for the 

highest undercooling (0.9 K), where the natural convection effects are supposed to be 

small. Furthermore, the selection parameter is far from constant along the entire range of 

studied undercooling. These authors [84] concluded that convection cannot cause these 

disagreements because the observed trends are independent of the undercooling and they 

are not mitigated by increments in the solute concentration. Additionally, They [84] 

suggested that experimental difficulties might be responsible for the discrepancies 

between theoretical predictions and experiments. 

 Dougherty and Gollub [30] measured the selection parameter for a 51 wt % 

solution of ammonium bromide ( )BrNH4  in water. This experimental study showed good 

agreement with the microscopic solvability theory; the reported value for the selection 

parameter ( 081.0* = )σ  was close to the theoretical prediction ( )065.0* =σ . Maurer and 

coworkers [93] studied aqueous solutions of ammonium bromide solidifying within a gel. 

They used few weight percents of a gelifying agent called tetramethoxysilane (TMOS). 

This agent does not change the mass diffusivity for the concentrations of ammonium 

bromide studied. Maurer et al. [93] verified the invariability of the mass diffusivity using 

optical techniques. The selection parameter reported in this investigation ( )114.0* =σ  

differs from the theoretical prediction of the three-dimensional solvability theory 

( 057.0* = )σ  by a factor of 2. In the case of the coefficient , the measured value 

 is about five times smaller  than the solvability prediction ( ). 
Maurer and coworkers [93] did not provide information about the fitting range used to 

measure the coefficient . Additionally, they claimed that the presence of the gel 

4A
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reduces convection and boundary effects. Ideally, the absence of such effects should 

bring the experimental results closer to microscopic solvability predictions. However, the 

measured selection parameter shows the opposite trend. No explanation was provided 

about this. 

Dougherty and Lahiri [33] studied the morphology of dendrites growing in an 

aqueous solution of ammonium chloride (36 wt %). For an undercooling of 0.77 K, the 

shapes of the dendrite were fitted to a fourth order polynomial. The fitting range was 

extended six tip radiuses behind the tip in order to measure the coefficient . The value 

obtained  matched the measurements by Glicksman and coworkers [73] and 

simulations by Karma et al. [58-59]. Other kinds of regression, such as parabolic and 

power law, were also attempted. However none of these performed as well as the fourth- 

order polynomial. Finally, Dougherty and Numally [34] studied the transient dendritic 

growth in an aqueous solution of ammonium chloride (38 wt %). They found that the 

selection parameter remains constant for very smooth changes in temperature. The period 

of temperature change needs to be larger than the time scale 

4A

( 004.04 =A )

VR  in order to keep the 

selection parameter constant. 

It is important to note that experimental data available for aqueous solutions [29-

34] are not as complete as the benchmark by Chopra and coworkers [23].  Nonetheless, 

the solutions experiments [29-34] indicate a reasonable agreement with the solvability 

theory, which is really promising. Unfortunately, the universality of the coefficient  

cannot be confirmed from the comparison between the measured values for solutions and 

pure substance because they are not based on the same fitting range. 

4A

Pioneer experimental attempts [96] for verifying the MST had been unsuccessful 

because of the intrinsic difficulties in the measurements of the free surface energy and its 

anisotropy in metals. However, substantial advances have been recently achieved in order 

to overcoming such inconveniences [97-98]. Besides, some recent measurements carried 
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out by Liu et al. [90] using an Al-4%Cu alloy under conditions of diffusion controlled 

solidification validate the MST.  

2.2.5 Numerical simulations 

Further analytical advances in the study of free dendritic growth are rather 

challenging. The inclusion of anisotropic surface energy increases considerably the 

mathematical complexity of the solidification problem. Under such circumstances, 

numerical methods are an invaluable tool to study free dendritic growth. In addition, the 

scarcity of experimental benchmarks increases the need for realistic simulations. Only the 

multiscale nature of dendritic growth has delayed quantitative studies based on numerical 

simulations. Fortunately, several breakthroughs in the phase-field methodology have 

made possible quantitative tests for the theories of dendritic growth. In the next 

subsections, such advances are briefly reviewed. 

2.2.5.1 Phase-field model for pure substances 

With the tremendous increase of computer power over the last thirty years, 

numerical methods have evolved as a reliable means to solve free-boundary problems. 

The phase-field method has become a powerful numerical method in past decades to 

model microstructure formation. Its advantage lies in the fact that it avoids the difficulty 

of tracking a sharp, complex interface by introducing one or more phase-field variables to 

distinguish different phases. This method was first developed by Fix [37] and Collins and 

Levine [24] for an isotropic system. Since then, many different phase-field models have 

been developed to model the solidification of pure melt (Sekerka et al. [107]; Karma and 

Rappel [58-60]; Kobayashi [67]), binary (Wheeler, Boettinger, and McFadden [122-123]; 

Caginalp and Xie [21]; Warren and Boettinger [121]), eutectic (Karma [56]; Elder et al. 

[36]), peritectic (Tiaden et al. [113]) and directional solidification (Grossmann et al. [45]) 

Karma and Rappel [58-60] developed the thin-interface limit of phase-field 

equations which has been successfully used in quantitative tests of microsolvability 
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predictions. A good agreement in terms of the selection parameter has been observed 

between the simulations and the solvability theory over a wide range of low crystalline 

anisotropies. However, poor agreement is observed for PVA (Fig 2.10a). 

Furthermore, Karma and coworkers [58-60] studied the morphology of three- 

dimensional dendrites using the phase-field method. These authors found that the 

coefficient  is almost independent of the surface energy anisotropy strength and the 

applied undercooling for fitting ranges between eight and ten radii behind the dendrite tip 

(Figure 2.10b). Moreover, simulation results 

4A

( )005.0004.0 4 ≤≤ A  agree quantitatively 

with experiments by Glicksman et al. [73] ( )004.04 =A  for a fitting range between four 

and ten tip radii behind the tip. Conversely, predictions of the phase-field simulations are 

half of the size of the one corresponding to MST ( )0104.04 =A . In addition, these 

authors suggested that the actual tip radius is not measurable, because of the tip distortion 

for material with fourfold-symmetry. They proposed the curvature radius associated with 

the best parabolic fitting of the tip as an alternative. Such curvature radius should be 

equal to the Ivantsov tip radius in most cases except for low undercoolings. 

Finally, Lu et al. [92] studied the effects of melt convection on the dendrite 

morphology using the phase-field method. These simulations show that the dendrite 

shape remains universal under the studied flow conditions. The predicted values of  

were around 0.004 for a fitting range of four radiuses behind the tip. Because of 

computational limitations,  was not predicted for larger fitting range. However, the 

trends observed for the reported fitting ranges suggest that  would remain in the 

vicinity of 0.004 for larger fitting ranges.  

4A

4A

4A

2.2.5.2 Phase-field model for alloys 

The findings of microscopic solvability theory have been confirmed by phase-

field simulations (Karma and Rappel [59]; Provatas et al. [102]). Previous studies with 

the phase-field method (Warren and Boettinger [121]; Danan et al. [26]; Tiaden et al. 
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[113], Beckermann et al. [6]; Kim et al. [66]; Suzuki et al. [111]) have not solved the 

energy equation for binary alloy solidification problems, but have made some suitable 

assumption for the temperature, that is, isothermal field, temperature constant in space 

but time-varying, “frozen gradient”, etc. Loginova et al. [91] studied non isothermal 

binary alloy solidification with the phase-field method. However, the authors report the 

presence of abnormally high solute-trapping and interface thickness-dependent results. 

Lan et al. [76-77] in their work included this model with an adaptive finite volume mesh 

that allows for the dendrites to grow without the thermal boundary layer reaching the 

boundaries. However, with interface thickness and solute-trapping Lan et al. [76-77] 

reported the lack of convergence of results. Karma [55] effectively addressed the problem 

of abnormally high solute-trapping in phase-field simulations of alloy solidification, with 

the introduction of the concept of the solute anti-trapping current. In this regard, a solute 

flux term is added to the species conservation to counterbalance the spurious solute-

trapping effect associated with the sharp variation of solute diffusivity across the 

interface. This concept was later adopted by Lan and Shih [77] to perform phase-field 

simulations of non-isothermal free dendritic growth of a binary alloy in a forced flow.  

Ramirez and Beckermann [103] used two-dimensional phase-field simulations to 

test the LGK and LKT models for alloys. They found that the transport heat and species 

are accurately predicted by these models (Figure 2.11a). Conversely, the selection 

criterion fails at two respects. First, the computed selection parameter depends strongly 

on applied undercooling (Figure 2.11b), solute concentration (Figure 2.11c) and Lewis 

number. Second, a minimum in the selection parameter is observed for the critical 

concentration, where both thermal and solutal transports are important. Besides, 

simulated tip velocity does not have a pronounced maximum. Finally, the corrections 

included in the LKT model to account for high Peclet number were found ineffective. 
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Figure 2.1: Stability of the solid-liquid interface during equiaxed solidification of pure 

material. Kurz and Fisher [71] argued that the solid-liquid interface is 
morphological unstable because perturbations make the temperature gradient 
steeper allowing a higher rejection of latent heat at the interface peaks. These 
authors reached this conclusion by comparing the temperature profiles for 
perturbed (red line) and unperturbed (black line) interfaces. This analysis was 
carried out assuming that there is no temperature gradient in the solid phase. 
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Figure 2.2: Ivantsov paraboloid in several coordinates systems [27]. 

(a) Cartesian coordinates 
(b) Paraboloidal coordinates 
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(a)   (b)  
 
Figure 2.3: Non-axisymmetric needle crystal [58] 

(a) Isometric view 
(b) Level curves 
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Figure 2.4: Phase diagram for a binary alloy. 
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Figure 2.5: Concentration and temperature profiles in the liquid phase according to LGK 

model [87-88]. The total undercooling in the liquid ( )TΔ  results from three 
different contributions: capillary undercooling ( )RΔ , solutal undercooling 

, and thermal undercooling ( CΔ ) ( )TΔ . 
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Figure 2.6: Results from the isothermal dendritic growth experiment 
  (a) Data for SCN [69]. 
  (b) Data for PVA [75]. 
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Figure 2.7: Comparison of the MST predictions and experimental benchmarks in terms of 

the selection parameter [96]. 
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Figure 2.8: Validation of LGK [87-88] and LB [84] models using the experimental data 
reported by Chopra et al. in terms of tip velocity and radius [23] 

  (a) Comparison in terms of tip velocity. 
  (b) Comparison in terms of tip radius. 
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Figure 2.9: Validation of LGK [87-88] and LB [84] models using the data reported by 
Chopra et al. in terms of Peclet number and selection parameter [23] 

  (a) Comparison in terms of Peclet number. 
  (b) Comparison in terms of the selection parameter. 
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Figure 2.10: Phase-field simulations predictions for free dendritic growth of pure 
substances 

(a) 

(b) 

(c) 

       (a) Selection parameter as a function of the anisotropy strength [60]. 
       (b) Selection parameter as a function of Peclet number [60]. 
       (c) Coefficient  as a function of the fitting range [58]. 4A
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(a) 

(b) 

(c) 

Figure 2.11: Phase-field simulations predictions for free dendritic growth of alloys [103] 
    (a) Peclet number as a function of thermal and solutal undercooling. 
    (b) Selection parameter as a function of the solutal undercooling. 
    (c) Selection parameter as a function of the Peclet numbers. 
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CHAPTER III 

METHODOLOGY 

3.1 Introduction 

As discussed in Chapter I, a thorough understanding of free dendritic growth is 

required to prevent internal defects and to improve physical properties of casting parts. 

Furthermore, the literature review in Chapter II shows that stationary free dendritic 

growth of alloys is not fully understood yet. Specifically, there are important 

disagreements between theoretical models and the experimental benchmark of Chopra 

and coworkers [21], which is the only one available in the literature. The aim of the 

current research, as stated in Chapter I, is to provide new experimental benchmark for 

succinonitrile-acetone alloys and to validate the existing models for free dendritic growth 

for alloys. These transparent materials solidify as body centered cubic metals do. In 

addition, their refraction index varies substantially during solidification permitting visual 

examinations of dendrites and other microstructures. The equiaxed dendritic 

solidification experiment (EDSE) takes advantage of these characteristics, and allows 

photographing the dendritic growth process in two orthogonal views. Using both 

sequences of photos, the growth velocity and the dendrite morphology were obtained. In 

the next sections, the followed research plan, the EDSE setup and the experimental 

techniques employed in the present research are briefly described. 

 

3.2 Objectives 

The main objectives of the present investigation were: 

• To validate existing theoretical models of free dendritic growth by studying the 

dependence of the tip velocity (V ), the tip radius ( R ), the Peclet number ( Pe ), 
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the selection parameter ( *σ ) and the coefficient 4A  on the undercooling and the 

solute concentration. 

• To characterize the sidebranching of pure succinonitrile and succinonitrile-

acetone dendrites in terms of the dendrite envelop, the projection area and contour 

length 

• To compare the new experimental data with previous experimental results for free 

dendritic growth of pure substances and alloys 

• To provide new benchmark experimental data for free dendritic growth of pure 

substances and alloys, intended for validation of theoretical and numerical 

models. 

3.3 Scope 

The present investigation was focused on stationary free dendritic growth. Dilute 

alloys were studied experimentally. Specifically, succinonitrile-acetone alloys were 

working materials. Undercoolings ranging from 0.1 K to 1.0 K were studied. The acetone 

concentration was varied from 0.0086 mol % through 0.4976 mol %. 

3.4 Plan of Research 

Considering the scope presented above, the current investigation was organized in 

the following stages: 

3.4.1 Experiments with Almost Pure Succinonitrile 

This set of experiments was used to evaluate the setup and the methodology 

employed in this investigation. The specific goal of these experiments was to corroborate 

the trends reported by Glicksman and coworkers [69] in their terrestrial experiments with 

pure succinonitrile. Such comparison were carried out in terms of tip velocity, tip radius, 

Peclet number and selection parameter. Ten different undercoolings between 0.1 K and 
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1.0 K were studied. The experiments for undercoolings of 0.1 K, 0.5 K, 0.8 K and 1.0 K 

were duplicated to verify the repeatability of the results. 

 3.4.2 Experiments for Succinonitrile-Acetone Alloys 

A new experimental benchmark for free dendritic growth of succinonitrile-

acetone alloys was obtained. Only dilute alloys with solute concentrations less than or 

equal to 0.4976 mol % were studied.  Five different concentrations, including almost pure 

succinonitrile, were investigated. For each concentration, six different undercoolings 

were studied. These undecoolings will range between 0.1 K and 0.7 K. Each experiment 

was repeated between two and five times. The specific objective of this stage was to 

verify the trends reported by Chopra and coworkers [21].  Again, comparisons were 

performed in function of tip velocity, tip radius, Peclet number, and selection parameter. 

3.4.3 Tests to Models of Dendritic Growth for Alloys  

The experimental benchmark for alloys obtained in the previous stages were 

compared with predictions of the LGK [81-82] and LB [78] models. This validation study 

was expected to address the discrepancies among Chopra’s benchmark [21] and existing 

model for dendritic growth of alloys. As usual, the validation study were carried out in 

function of tip velocity, tip radius, Peclet number and selection parameter. 

3.5 Experimental Setup 

The EDSE setup, portrayed in Figures 3.1 and 3.2, was composed of three major 

groups of elements: optical equipments, isothermal bath, and growth chamber. The 

solidification process occurred in the growth chamber, which was located inside of the 

isothermal bath. Consequently, melting and solidification processes could be controlled 

by the isothermal bath. During the experiments, dendrite photographs and videos were 

obtained through the optical equipments. Figure 3.1a illustrates schematically the optical 

 



www.manaraa.com

 48

elements of the EDSE setup. On the other hand, the isothermal bath and the growth 

chamber are sketched in Figure 3.1b. 

Specifically, the optical equipment used consisted of two CCD cameras, a lens 

array, a lamp and an LED. The CCD cameras had different specifications. One was a 

high-resolution high-speed (up to 15 fps) monochrome progressive scan CCD camera, 

and from now on it will be referred as the “high resolution camera.” The other was a 

color video CCD camera, and this will be referred as the “low resolution camera.” The 

dendrite contour was obtained from the high resolution camera. Both cameras provided 

the angular orientation of the dendrite in their respective planes. The growth direction 

with respect to gravity was obtained from these two angles. A LED was the light source 

for the monochrome progressive scan camera, while a tungsten lamp (6.25V / 2.75A) 

illuminated the low resolution camera. An lens array increased the resolution of the 

monochrome progressive scan camera to 3.24 µm/pixel. 

The main functions of the isothermal bath were melting and undercooling the 

material inside the growth chamber. The cylindrical wall of the isothermal bath was made 

of polymethyl-methacrylate. This tank had four optically polished windows, which 

prevent any optical aberration originated by the curvature of the tank wall in the images 

registered by the cameras. The fluid filling the tank was mixture of ethylene glycol and 

water at 70 v/v %. Such mixture was adopted as a working fluid because its refraction 

index matches the one corresponding to liquid SCN. An electrical heater located in the 

bottom of the tank was used to increase the temperature of the bath. Four thermistors, 

with resolution of ± 0.001 K, were installed inside the tank to monitor the temperature of 

the working fluid. The thermistor signals were input into a data acquisition system and an 

on-off controller. This latter device regulated electricity supply of the heater and kept the 

temperature of the bath around the set point. Finally, a stirrer made uniform the 

temperature inside the tank. The entire system maintained the temperature of the working 

fluid within ± 0.003 K around the set point. 
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 As seen in Figure 3.1b, the growth chamber can be divided into several elements: 

the spherical compartment, the stinger, the void compensator, the valve and the acetone 

reservoir. The spherical portion of the chamber contained the studied materials (SCN or 

SCN-ACE); the solidification process occurred in this region. During the manufacturing 

of the chamber, the spherical section was filled with 70 cm3 of almost pure SCN (0.0086 

mol. %), and vacuum sealed at an absolute pressure of 0.2 bars. In order to study SCN-

ACE alloys, some acetone had been added to the initially pure SCN. The acetone supply 

came from the cylindrical reservoir shown in Figures 3.1b and 3.2. This reservoir was 

connected to the chamber through a valve, which controlled the flow of acetone toward 

the chamber. With the purpose of controlling the location of the dendrites inside the 

chamber, a capillary tube (the stinger) was inserted inside the spherical portion of the 

chamber. The external extreme of the stinger was closed, keeping the chamber sealed. 

Conversely, the internal end of the stinger was open. By means of a thermo-electrical 

cooler located on the external portion of the stinger, the dendrites started to grow inside 

the stinger and propagated towards the interior of the chamber through the open end. 

Finally, the void compensator was an empty portion of the growth chamber, which 

allowed the expansion of melted material. 

3.6 Experimental Procedure 

Before each dendritic growth experiment, the isothermal bath temperature ws set 

up at 58.9 °C. The bath was maintained at this temperature until the SCN or SCN-ACE 

alloy inside the chamber completely melted and the gradient of solute concentration 

disappeared. In the case of pure SCN, a period of 2 hours was required to melt the 

material inside the chamber. For alloys, it took 12 hours for melting the material and the 

achievement of a uniform solute concentration inside chamber. Once the appropriated 

waiting period ended, the bath temperature was then reduced to the desired undercooling. 

It took roughly an hour to reach a uniform temperature inside the chamber. After this 
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second pause, the thermoelectrical cooler was turned on with the purpose of generating a 

dendrite inside the stinger. The dendrites grew down the inside of the stinger, until they 

reached the spherical compartment and started growing freely near the center of the 

chamber.  

Once inside the spherical portion of the chamber, each dendrite underwent a 

transitory period before reaching the stationary growth velocity, which was maintained 

until the dendrite thermal field interacted with the chamber walls (Figure 3.3a). The video 

recording and photograph taking were initiated when the selected dendrite left the stinger, 

and they were stopped when the tip of the dendrite grew out of the cameras’ view. 

Generally, the crystallographic preferred directions did not coincide with the normal 

vectors to the camera planes. Because of this misalignment, the actual contour of the 

dendrite could be registered. This inconvenience was solved by rotating the growth 

chamber until the crystallographic preferred directions coincide with the normal vectors 

to the camera planes. Photos collected during the alignment period were discarded.  

In the next section, the methodology for analyzing dendrite photos is presented. 

Note that an additional experimental procedure was required to measure the melting point 

of the alloy inside the chamber after each increment in the solute concentration. For 

simplicity, such procedure was omitted in this section. However, the liquidus temperature 

measurement is discussed in the Appendix A. 

3.7 Data Analysis 

Digital photographs and video recordings constitute the primary data registered 

during this experimental investigation. The growth velocity, tip radius, the coefficient 

, dendrite envelop, projection area and contour length were measured from these 

photos and videos. Then, the Peclet number and the selection parameter were estimated 

from the measured tip velocity and radius. These processes of measurement and 

estimation are described in the next sub-sections. 

4A
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3.7.1 Measurement of Growth Velocity  

The growth velocity as a function of time was obtained from photographs and 

video recording using the following procedure: 

• First, the dendrite’s contour was obtained in both cameras’ planes 

applying a Laplacian of the Gaussian filter to the sequences of photos and 

video snapshots recorded during each experiment. While filtering, the 

locations of the lowest point in the dendrite’s contour were registered as a 

function of time. 

• Next, the coordinates of the lowest point in the dendrite’s contour in each 

plane, ( )αα ZX ,  and ( )ββ ZX , , were regressed to straight lines: 

                αααα bXmZ += ββββ bXmZ +=  (3.1) 

• Thereafter, the growth angles in the camera planes ( )βα , , measured 

respect the vertical axis, were obtained from the slopes of the regressions 

obtained in the previous step: 

             ( )αα m1tan 1 −= −    ( )ββ m1tan 1 −= −  (3.2) 

• Then, the eulerian growth angle with respect to gravity ( )θ  was calculated 

from the growth angles in the camera planes ( )βα ,  as follows: 

             ( )( ) ( )( )22 tantan)tan( βαθ +=  (3.3) 

• Subsequently, the dendrite tip position as function of time was determined 

from the high resolution camera contour. 

• After that, the vertical component of the transient growth velocity ( )zV  

was obtained using the following relationship: 

             tZVZ ΔΔ=  (3.4) 
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• Finally, the magnitude of the transient growth velocity ( )V  was 

determined from the Eulerian angle ( )θ  as follows: 

             ( )θcosZVV =  (3.5) 

The steady-state growth period for each experiment was determined from the 

graph of tip velocity as function of time (Figure 3.3a). In fact, the time interval 

corresponding to the plateau in growth velocity was considered the stationary period. 

Consequently, the stationary growth velocity corresponded to the average during the 

stationary period. In Figure 3.3 b, the instantaneous and stationary velocities were 

compared for a small group of experiments. Lastly, the uncertainty of the velocity 

measurements was estimated as follows: 

 22
0 VSVV +Δ=Δ  (3.6) 

where  is half of the resolution of the velocity measurement, which was obtained 

from the specifications of  the high resolution camera and the data acquisition system, 

and  is the standard deviation of velocity during the stationary growth period. 

2
0VΔ

VS

3.7.2 Measurement of Tip Radius and   4A

The sequence of photos coming from the high resolution camera was reexamined 

in order to characterize the dendrite’s morphology. First, the photos were rotated and 

scale up using the growth angles so the full amplitude of the dendrite’s ridges could be 

measured. Then, the dendrite’s contours were obtained applying a Laplacian of the 

Gaussian filter. After that operation, the contours were translated to origin of the 

reference frame used, and the coordinates of the point in the contours (  were 

converted from pixels to microns. Next, these coordinates were regressed to the following 

fourth order polynomial using the robust fitting method [35]: 

)ZX ,

  (3.7) 4
2

2
1 XcXcZ +=
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where Z  and X  are the vertical and horizontal coordinates. On the other hand, the 

dendrite shape predicted by the MST is: 

 ( θ4cos
2

4
4

2

rArz −= ) (3.8) 

where r , θ  and  are radial, azimuthal and vertical dimensionless coordinates. Since the 

dendrites were rotated during the experiment in such a way that 

z

0=θ , then: 

 4
4

2

2
rArz −=  (3.9) 

Moreover, a further simplification is possible considering that the dendrite 

contour was aligned with the gravity direction: 

 4
4

2

2
xAxz −=  (3.10) 

where x  is a horizontal dimensionless coordinate. This equation can be expressed in 

dimensional form using the tip radius ( )R  as scaling factor: 

 4
3
42

2
1 X

R
AX

R
Z −=  (3.11) 

Finally, the tip radius and the coefficient  were obtained by comparing the 

fitting of the dendrite contour (Equation 3.5) to the prediction of the MST (Equation 3.9): 

4A

 
12

1
c

R =  and  (3.12) 3
24 RcA −=

 The regressions of the points in the dendrite’s contours were carried out for fitting 

ranges between 2 and 11 radii behind the tip. Furthermore, the reported tip radiuses and 

coefficients  correspond to average values throughout the constant velocity period for 

a fitting range of 10 radii behind the tip (Figure 3.4). Also, the uncertainty in the radius’s 

4A
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measurements due to the fitting ( RΔ ) were assessed as the absolute value of the 

difference between the average radiuses for the fitting ranges of 6 ( ) and 10 ( ) 

radii behind the tip:  

RR6 RR10

 RR RRR 106 −=Δ  (3.13) 

Limitations in the resolution of our optical equipments motivated the adoption of 

this criterion. This issue is discussed in detail in Chapter IV. Finally, the standard 

deviation of the coefficient  during the constant velocity period was reported as the 

corresponding uncertainty (Figure 3.5). 

4A

3.7.3 Calculation of the Peclet Number 

The experimental Peclet number as a function of time was calculated substituting 

the data for tip velocity (  and radius )V ( )R  in the following relationship: 

 α2VRPeT =  (3.14) 

where α  represents the thermal diffusivity of the studied material. As in previous 

analyses, the stationary value of the Peclet number corresponded to the average value 

during the steady-state period. In Figure 3.6, the transient and stationary Peclet numbers 

were compared for an individual experiment (Figure 3.6a) and a small subset of 

experiments (Figure 3.6b). In addition, uncertainty in the Peclet number was estimated 

from the uncertainties in tip radius and velocity using the sequential perturbation method. 

3.7.4 Calculation of the Selection Parameter 

The calculation of the selection parameter as a function of time for pure 

substances was straightforward. It only required substituting the experimental values of 

the tip velocity (  and radius  in the following expressions: )V ( )R

 2
02* VRdασ =  (3.15) 
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where α  stands for the thermal diffusivity, and  represents the capillary length.  0d

In contrast, the estimation of the selection parameter for alloys based on the LB 

model could be rather complicated. Since modified Ivantsov functions depend implicitly 

on both temperature and concentration at the interface (  and ), an iterative 

procedure is required to determine the selection parameter. This iterative approach was 

avoided using the regular Ivantsov functions. Several test cases were analyzed using both 

kinds of Ivantsov functions and the differences observed were negligible. Consequently, 

the usage of regular Ivantsov function was adopted. The calculation of the selection 

parameter as a function of time for alloys can be summarized as follows: 

*T *C

• Using the experimental values of tip velocity and radius, the Peclet 

numbers ( CPe  and TPe ) were calculated as follows: 

             
α2

VRPeT =  and 
D

VRPeC 2
=  (3.16) 

• Then, the dimensionless solutal undercooling ( )CΩ  was calculated using 

the regular Ivantsov solution: 

             ( ) ( )CCCC PeEPePe 1exp=Ω  (3.17) 

• Finally, the selection parameter ( )*σ  was determined using the 

approximation for low undercoolings: 

             
( )

( )

1
00

11
2*

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω−−

Δ
= T

C

Lf
C Pe

k
cLTk

Ped
ρ

σ  (3.18) 

In Figure 3.7, the transient and stationary selection parameters are compared for 

an individual experiment (Figure 3.7a) and a small subset of experiments (Figure 3.7b). 

As preceding subsections, the steady-state selection parameter corresponds to the average 

during the stationary period. Moreover, the selection parameter uncertainty was estimated 

from the uncertainties in tip radius and velocity using the sequential perturbation method. 
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3.7.5 Sidebranching Measurements 

The sidebranching morphology was characterized using three parameters: the 

dendrite’s envelope, the projection area ( ) and the contour length (U ). The dendrite’s 

envelope is defined by the loci of the tips of all sidebranches growing actively. The 

projection area ( ) corresponds to one half of the dendrite cross sectional area. The 

contour length (U ) is the distance from the tip to any point of interest along the 

dendrite’s border. All these parameters, shown in Figure 3.8, were measured as functions 

of the longitudinal distance from tip ( ) using the dendrites contour obtained during the 

examination of the tip’s morphology. First, the dendrite envelop was determined locating 

by hand the tips of all active sidebranches and fitting their coordinates (  and ) to a 

power law employing the least square method. Then, the integral parameters (  and U ) 

were measured applying the particles analysis function of the image processing software 

ImageJ to the dendrite contours obtained from the high resolution camera. Such function 

is able to calculate the area and the perimeter of any close contour. 
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Figure 3.1: Schematic drawings of the Equiaxed Dendritic Solidification Experiment 
(EDSE) setup.  

    (a) Top view. 
    (b) Side view. 
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Figure 3.2: Photo of the EDSE setup (side view). 
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Figure 3.3: Tip velocity measurement as a function of time. 
  (a) Single experiment for K 0.125=ΔT  and 1045.00 =C  mol. % 
  (b) Set of measurements for K 0.125=ΔT  and 1045.00 =C  mol. %. 
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Figure 3.4: Tip radius measurement as a function of time. 
  (a) Single experiment for K 0.125=ΔT  and 1045.00 =C  mol. % 
  (b) Set of measurements for K 0.125=ΔT  and 1045.00 =C  mol. %. 
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Figure 3.5: Coefficient  as a function of time. 4A
  (a) Single experiment for K 0.125=ΔT  and 1045.00 =C  mol. % 
  (b) Set of measurements for K 0.125=ΔT  and 1045.00 =C  mol. %. 
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Figure 3.6: Peclet number as a function of time. 
  (a) Single experiment for K 0.125=ΔT  and 1045.00 =C  mol. % 
  (b) Set of measurements for K 0.125=ΔT  and 1045.00 =C  mol. %. 
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Figure 3.7: Selection parameter as a function of time. 
  (a) Single experiment for K 0.125=ΔT  and 1045.00 =C  mol. % 
  (b) Set of measurements for K 0.125=ΔT  and 1045.00 =C  mol. %. 
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 Figure 3.8: Parameters used to characterize the sidebranching’s morphology. The 

dendrite’s envelope is illustrated on the left half of the figure. Conversely, 
the integral parameters (  and U ) are sketch on the right half. F
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Introduction 

All contributions of the current investigation are summarized in this chapter. First, 

the data collected for pure SCN are presented and discussed. Then, the experiments with 

alloys are reviewed. In both cases, the new experimental data will be compared with 

theoretical models and previous experimental benchmarks. Two major points are stressed 

in this discussion. On one hand, the significant agreement found between the experiments 

with pure SCN and a previous benchmark by Glicksman et al. [69] validates the 

experimental methodology presented in Chapter III. On the other hand, the current 

experimental data for alloys exhibits more consistency than previous benchmarks and 

allows further validation of several aspects of the existing theories for free dendritic 

growth. Note that all physical properties used in this investigation are summarized in 

Table 4.1. 

Most theories of dendritic growth have two components, a transport model and a 

selection criterion. Through the transport model, the Peclet number is estimated using the 

applied undercooling as input. Once the Peclet number is known, the selection criterion is 

employed to determine uniquely the tip velocity and radius. Consequently, the 

predictions of tip velocity and radius depend on both transport model and selection 

criterion. For that reason, the following discussions will address firstly the performance 

of transport models and selection criteria. Thereafter, predictions of tip velocity and 

radius will be evaluated. Finally, the dendrite’s shapes obtained in this investigation are 

compared to the MST and phase field simulation predictions. Since the growth velocity 

and tip radius are the measured variables, this approach might seem contra-intuitive. 

However it allows identifying causes of disagreement between experiments and 

theoretical predictions. 
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4.2 Experiments with Pure Succinonitrile 

Fourteen successful experiments, over a range of undercoolings between 0.1 and 

1.0 K, are presented here for pure SCN. Several micrographs corresponding to these 

experiments are shown in Figure 4.1. For each performed test, the stationary values of 

growth velocity, tip radius, Peclet number, selection parameter ( *σ ), the coefficient , 

and growth angle with respect to gravity are reported (Table 4.1) All collected data 

correspond to dendrites growing downward. The current benchmark shows good 

agreement with the existing theories, experiments and simulations of free dendritic 

growth. Such consensus validates experimental methodology used. 

4A

4.2.1 Results for the Selection Parameter 

The LGK and LB models use the same selection criterion. They consider that 

selection parameter ( 2
02* VRdασ = ) is a constant, independent of the Peclet number 

and the applied undercooling. For pure SCN, the most accepted value of the selection 

parameter is 0.02 [50-51, 69]. In order to evaluate the selection criterion adopted in LGK 

and LB models, the selection parameter calculated from the measurements is compared to 

the constant value of 0.02 in Figure 4.2a. This graph portrays the selection parameter as a 

function of the applied undercooling. It shows that the selection parameter does not 

remain constant over the entire range of studied undercoolings. Moreover, the selection 

parameter seems to decay with the undercooling. A similar behavior was reported by 

Glicksman et al. [69]. 

Figure 4.2b portrays a comparison between the collected data and the terrestrial 

benchmark by Glicksman and coworkers [69] in terms of the selection parameter. 

Besides the dispersion in the data by Glicksman et al. [69], a reasonable qualitative 

agreement can be observed. Our measurements lay within the dispersion of Glicksman’s 

values, even thought the first are slightly smaller. With the intention of quantitatively 
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comparing these experimental benchmarks, the collected data for the selection parameter 

in the present investigation have been regressed to the following power-law relationship: 

  (4.1) nTΔσ=σ 0*

where 0σ  and  are adjustable parameters. If the selection parameter were independent 

of the undercooling,  would be zero and 

n

n 0σ  would be equal to the average of the 

collected data for the selection parameter. Glicksman and coworkers reported a similar 

regression for each set of experiments presented in reference [69]. The regression 

obtained in the present research ( 0166.00 =σ  and )151.0−=n  reaffirms that the 

selection parameter is inversely related to the applied undercooling. Furthermore, these 

fitting parameters are close to the values reported ( 0004.00194.00 ±=σ  and 

 by Glicksman et al. [69] for terrestrial experiments. Interestingly, 

our exponent agrees better with Glicksman’s results for microgravity 

 and for the diffusion limited range 

)017.0088.0 ±−=n

( 014.0131.0 ±−=n ) ( )045.0203.0 ±−=n . This later 

finding indicates that the disagreement between our data and the terrestrial benchmark by 

Glicksman has a systematic origin. Since the microgravity data was collected after the 

terrestrial benchmark, it is reasonable to infer that methodology and equipments used in 

space are closer to those employed during this investigation and presented in Chapter III. 

Through three-dimensional phase field simulations, Karma and Rappel [60] 

showed that the selection parameter decreases linearly with the undercooling (or Peclet 

number). In addition, Ramirez and Beckermann [103] also predicted an almost linear 

decrease in the selection parameter, as defined in the LGK and LKT models, with the 

applied undercooling (or Peclet number) using two-dimensional phase field simulations. 

Neither of these numerical investigations studied the exact range of surface energy 

anisotropy and applied undercooling corresponding to most experimental benchmarks, 

because of limitations in the computational cost of the simulations. However, their 
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qualitative agreement with the experimental benchmark by Glicksman et al. [69] and the 

present investigation seriously challenge the constancy of the selection parameter. 

Two main conclusions can be drawn from the previous findings. On one hand, the 

selection criteria implemented into the LGK and LB models are not realistic for the range 

of studied condition. On the other hand, the collected data agrees reasonably well with 

the benchmark by Glicksman and coworkers [69] in terms of the selection parameter. 

4.2.2 Results for the Peclet Number 

In order to evaluate the transport portions of the LGK∗ and LB models, the 

thermal Peclet numbers obtained from experimental measurements and theoretical 

predictions are compared in Figure 4.3a. This logarithmic graph portrays the Peclet 

number as a function of the undercooling. Two predictions for the LB model are 

presented: the first one (continuous line) results from assuming 02.0* =σ , while the 

other (white triangles) utilizes the measured selection parameter. It can be observed that 

the thermal Peclet number increases monotonically with the undercooling. An 

outstanding agreement between both LB model predictions and the collected data is 

observed for the range of undercooling studied ( )K 0.1K 1.0 ≤≤ TΔ . Such behavior was 

expected because the convective effects control dendritic growth at low undercoolings. 

The agreement between both prediction for the LB model and our measurement indicates 

that the selection parameter ( )*σ  and the thermal Peclet number ( )TPe  are independent 

of each other as the theory predicts. Also, the disagreement observed between LGK 

model prediction and the collected data indicates that the convective effects are important 

for the range of studied undercoolings. Moreover, the discrepancy between our 

measurements and the LGK model is similar to that reported in reference [69] (Figure 

4.3b). 

                                                 
∗ In the absence of solutal and capillary undercoolings, the LGK model is reduced to the 

Ivantsov solution. 
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Our measurements are compared to the experimental benchmark by Glicksman et 

al. [69] in Figure 4.3b. Both sets of data show the same trend, the dispersion in 

Glicksman’s data is enclosed by our uncertainty bars for almost the entire range of 

studied undercoolings. For undercoolings above 0.2 K, our measurements are slightly 

bigger than the averages for Glicksman’s data. In general, both benchmarks agree quite 

well. This agreement validates our methodology. 

4.2.3 Growth Velocity Measurements 

Growth velocity measurements are presented as a function of the undercooling in 

Figure 4.4a. The predictions of the LGK and LB models based on a constant selection 

parameter  are also presented in the same figure. In this logarithmic plot, it 

can be appreciated that the tip velocity increases with the undercooling. An outstanding 

agreement with the LB model can be observed for undercoolings below 0.6 K. Indeed, 

the small differences between experiments and theoretical predictions in this range of 

undercoolings are within the uncertainty of the measurements. The agreement between 

experiments and the LB model was expected, since convective effects dominate dendritic 

growth at low undercoolings. Glicksman et al. [69] reported a similar trend even in 

microgravity conditions. 

( 02.0* =σ )

)

For undercoolings above 0.6 K, the experimental data get closer to prediction of 

the LGK model. This behavior was expected, since diffusive effects dominate the growth 

of dendritic crystal at high undercoolings. However, the divergence of the experimental 

data from the LB model occurs before the corresponding theoretical estimate 

. This finding indicates that LB model overpredicts slightly the convective 

effects for undercoolings above 0.6 K. The present benchmark is compared to the 

terrestrial measurements of Glicksman et al. [69] in Figure 4.4b. Both sets of experiments 

show the same behavior. Furthermore, the small dispersion in the terrestrial data by 

Glicksman and coworkers is within the uncertainty of the current benchmark. Finally, it 

( K 7.1=ΔT
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can be concluded that our velocity measurements have a good overall agreement with 

both the prediction of the LB model and the terrestrial data by Glicksman and coworkers 

[69].  

4.2.4 Tip Radius Measurements 

According to the MST [16-17], the dendrite shape is parabolic in the immediate 

vicinity of the tip, but it starts to evolve into a non-axisymmetric shape called non-

axisymmetric needle crystal within a short distance from tip. It is well known that the 

cross section of this non-axisymmetric needle crystal can be described by a fourth order 

polynomial. In order to verify these aspects of the MST and to assess the quality of our 

measurements, the tip radius is presented in Figure 4.5a as function of the fitting range 

for a parabola and a four order polynomial. Furthermore, this figure compares the results 

for two different undercooling (0.2-0.7 K). 

For the low undercooling (0.2 K), it can be seen that the tip radius increases 

linearly with the fitting range when the parabolic fit is used. Such behavior is 

consequence of the continuous deviation from the parabolic shape far from the tip. 

Conversely, the tip radius remains constant when the fourth order polynomial fit is used. 

In case of the high undercooling (0.7), the accumulation of error barely can be 

appreciated when the parabolic fit is used. This means that the resolution of the photos is 

not enough to register any difference between one regression and the other. 

Because of the lack of resolution, it is natural to extend the fitting range as much 

as possible so a stable measurement can be taken. However, the inclusion of sidebranches 

inside the fitting range needs to be avoided if possible. In order to get a good compromise 

between these issues, a fitting range of 10 radii behind the tip was adopted. The 

uncertainty of the radius was established as the difference between the values for fitting 

ranges of 6 radii and 10 radii behind the tip. Since the sidebranches generally appear 6 

radiuses or more behind the tip, the value for such fitting range was selected as a 
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reference for the uncertainty estimation. Additionally, the robust fitting method was 

adopted to reduce the effects of the inclusion of the sidebranches inside the fitting range. 

The robust fitting is relatively insensible to outliers and help to obtain stable 

measurements of the tip radius. Figure 4.5b portrays the coefficient of the 4th order non-

axisymmetric term  as a function of the fitting range for two different undercoolings 

(0.2–0.7 K). It can be seen that our photos do not have enough resolution to facilitate the 

measurement the coefficient  for undercoolings above 0.7 K. The measurements 

undercoolings below 0.7 K are discussed in the next section. 

4A

4A

Figure 4.6 presents a comparison among the actual dendrite shape for an 

undercooling of 0.3 K, the corresponding parabola (red dots) and the non-axisymmetrical 

needle crystal (green dots). Instead of using the value of  predicted by the MST 4A

( 9614 =A ) , the measure value ( )004.04 =A  was employed to draw the needle crystal 

contour. An outstanding agreement can be appreciated between the dendrite contour and 

the shapes proposed by the MST. The first sidebranches appear around 8 radii behind the 

tip. Also it can be appreciated that the needle crystal approximation breaks down around 

15 radii behind the tip. 

Finally, the tip radius measurements as a function of the applied undercooling are 

portrayed in the logarithmic plots contained in Figure 4.7 Again, a comparison between 

experimental data and the predictions of LGK (dash line) and LB (continuous) models 

are provided for 02.0* =σ (Figure 4.7a). Another prediction of the LB (white triangles) 

model is presented, in this case the tip radius is estimated using the measured *σ . As 

expected, the tip radius is inversely related to the applied undercooling. This trend can 

also be appreciated through the set of micrographs presented in Figure 4.1. The 

agreement between collected data and the prediction of the LB model with constant *σ  

is satisfactory for undercoolings less than or equal to 0.4 K. In the case of undercoolings 

bigger than 0.4 K, the radius measurements deviate towards the LGK prediction. This 

change in tip radius behavior was anticipated since the dendritic growth at low 
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undercoolings is controlled by convective effects. The decline in the selection parameter 

with the undercooling might be responsible for the departure of the radius measurement 

from the prediction of the LB model with constant *σ . Because the selection parameter 

is inversely proportional to the square of the tip radius, the deviation of the radius 

measurement from the LB model prediction with constant *σ  is larger than in the case 

of the growth velocity. Conversely the prediction of the LB model using the measured 

*σ  agrees with our experimental measurements along the entire range of studied 

undercooling . In Figure 4.7b, our measurements are compared to those by Glicksman 

and coworkers [69]. A complete agreement can be observed. 

 4.2.5 Results for the Coefficient  4A

As stated in Chapter II, the amplitude of dendrite’s ridges can be quantified 

through the coefficient . According to the MST [16-17], this parameter is predicted to 

be universal and equal to 1/96. However, phase field simulations by Karma and 

coworkers [58] predicted a smaller value 

4A

( )0045.04 ≈A  for a fitting range of ten radii 

behind the tip. For this particular fitting range, the phase field simulations shows that the 

coefficient  is almost independent of the surface energy anisotropy intensity and the 

applied undercooling. Glicksman and coworkers [69] studied experimentally the 

morphology of pure SCN dendrites. They used a fourth order polynomial to fit the 

dendrite contour and to measure . Using a fitting range of eight radii behind the tip, 

these authors found that . The measurements of the coefficient  collected 

during the present investigation are displayed in Figure 4.6. These measurements come 

from a regression to a fourth order polynomial with a fitting range of ten radiuses behind 

the dendrite tip. In this plot, the coefficient  is portrayed as function of the applied 

undercooling. It can be appreciated that the coefficient  is roughly constant and equal 

to 0.004. The fluctuations in the value of  are well within the uncertainty of the 

experiments. Even though the collected measurements present a factor two difference 

4A

4A

004.04 =A 4A

4A

4A

4A
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with the MST prediction, a qualitative agreement with the MST can be claimed. On the 

contrary, an outstanding quantitative agreement with the phase field simulations of 

Karma et al. [58] and the experimental benchmark by Glicksman et al. [69] can be 

appreciated. 

4.2.6 Sidebranching Morphology 

4.2.6.1 Dendrite Envelope 

Li and Beckermann [85-86] measured the dendrite envelop for the pure SCN 

dendrites grown in microgravity by Glicksman and coworkers [69]. They found the 

following expression for the envelope: 
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The discrepancies between the measurement by Li and Beckermann and the MST 

prediction are due to two-dimensional nature of the MST model for the sidebranches. 

Since such model is based in the solution for the Hele-Shaw flow proposed by Algrem 

[1], it does not account for the three-dimensional features of the boundary layer around 

the dendrite. The measurements of integral parameters show similar disagreements with 

the MST. 

In order to validate our methodology, the dendritic envelope was measured for 

pure SCN dendrites grown under seven different undercoolings (0.1, 0.2, 0.3, 0.5, 0.6., 

0.8, 1.0 K). The results are presented in Figure 4.9; the envelope obtained is given by: 
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Along with our experimental data, Figure 4.9 portrays the tip’s shape predicted by 

the MST (non-axisymmetric needle crystal) and Li’s envelop. An outstanding agreement 
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between terrestrial and microgravity envelop can be seen. Both envelopes meet the non-

axisymmetric needle crystal around 10 radii from the tip. The terrestrial envelop is 

thinner than the microgravity one. Since the experiments on earth correspond to dendrites 

grown downward, the effects of heat convection may be responsible for the 

morphological differences in the sidebranches.  

4.2.6.2 Projection area 

The experimental investigations by Hurlimann et al. [52] and Bisang and 

Bilgram[14-15] hinted that the dendritic structure can be described by geometrical 

parameters, which are independent of the undercooling, and that can be scaled by the tip 

radius. The projection area corresponds to one half of the cross sectional area enclosed by 

the dendrite’s ridges. Integrating Equation 2.40, the prediction of the MST for the 

normalized projection area can be obtained: 
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Li and Beckermann [85-86] also measured the normalized projection area for the 

dendrites grown in microgravity during the IDGE flights [69] and reported the following 

expression: 
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In Figure 4.10, our measurements of the normalized projection area for pure SCN 

dendrites are presented along with Li’s results and the normalized projection area for a 

non-axisymmetric needle crystal. Our expression for the normalized projection area is 

given by: 
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The projection area of the terrestrial dendrites is slightly bigger than the 

projection area of microgravity dendrites. Such small difference is within the uncertainty 

of the measurements 

4.2.6.3 Contour Length 

The contour length corresponds to the distance for the tip to any point in the 

dendrite contour measured along the solid-liquid interface. Li and Beckermann [85-86] 

also measured the contour length for the dendrites grown in microgravity during the 

IDGE flights [69] and reported the following expression: 
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Our measurements of the contour length for pure SCN dendrites are presented in 

Figure 4.11 along with Li’s results and the normalized projection area for a non-

axisymmetric needle crystal. The latter was obtained applying the definition of arc length 

in two-dimensions to the fourth order polynomial proposed by the MST, and solving 

numerically the resulting integral. Our expression for the contour length is given by: 
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The morphological differences between terrestrial and microgravity dendrites are 

very slim, observed differences are within the uncertainty of the measurements. This 

outstanding agreement among our measurements and several previous investigations 

validates the methodology proposed to characterize the sidebranching 

4.3 Experiments with Succinonitrile-Acetone Alloys 

Four dilute SCN-ACE alloys (0.1045, 0.1710, 0.3065 and 0.4976 mol. %) had 

been studied. Ninety three successful experiments were carried out on these alloys over a 
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range of undercoolings between 0.1 and 0.7 K. Micrographs shown in Figures 4.11 to 

4.14 correspond to these experiments. As in the case of pure substances, only dendrites 

growing downward were considered in this investigation. For each experiment, the 

steady-state values of growth velocity, tip radius, Peclet number, selection parameter, 

growth angle with respect to gravity, and the sidebranching parameters were measured or 

estimated following the proposed methodology (Chapter III). In addition, each 

experiment was replicated between two and five times to ensure the statistical 

significance of the reported data. All collected data are presented in Tables 4.2, 4.3, 4.4 

and 4.5. This experimental benchmark is aimed at to corroborate and to complement the 

experimental investigation carried out by Chopra and coworkers [23]. 

4.3.1 Selection Parameter 

4.3.1.1 Effects of Undercooling 

The selection parameter is presented in Figure 4.16 as a function of the applied 

undercooling for each of the SCN-ACE alloys studied. As in the case of pure SCN, the 

selection parameter decreases almost linearly with the undercooling. The slope for alloys 

is slightly steeper than for pure SCN. The selection parameter dependence on the 

undercooling is almost identical for all studied alloys. Statistical tests of correlation show 

that the selection parameter depends only on the undercooling (p-value = 0.000 and 

Pearson coef = -0.595). On one hand, a negative Pearson coefficient means that the 

selection parameter and the undercooling are inversely related as stated above. On the 

other hand, a p-value of 0.000 indicates that there is almost 100% confidence on the 

correlation between the selection parameter and the undercooling. These findings can be 

supported qualitatively by the phase-field simulations of Ramirez and Beckermann [103], 

which predicted similar behavior for the selection parameter of alloys defined by the 

LGK and LKT models. In addition, our data show more consistency and less scatter in 

terms of the selection parameter than the benchmark by Chopra et al. 
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4.3.1.2 Effects of Solute Concentration 

Figure 4.16 shows that any variation in the selection parameter respect to the 

solute concentration is within the uncertainty of our experiments. Statistical analysis 

shows no correlation between this variables (p-value = 0.870 and Pearson coef = 0.017). 

Specifically a p-value above 0.05 means a very low level of confidence in the relation 

between the selection parameter and solute concentration, and a Pearson correlation 

coefficient of 0.017 a weak dependence between this variables. For all concentrations, the 

selection parameter *σ  is less or equal to 0.02. This finding indicates that the 

inconsistencies in Chopra’s measurements of the selection parameter [23] for 

concentrations above 0.1 mol % were caused by systematic errors. According to Trivedi 

and Kurz [118], the selection parameter *σ  should be independent of the solute 

concentration and undercooling (or ). Recently, Liu et al. validated the MST and 

LGK model for an Al- 4 wt% Cu alloy under solidification directional in the fully 

diffusive regime. Consequently, it is reasonable to assume that convective effects are 

responsible for the discrepancy between our data and the theories for alloys. 

TPe

4.3.2 Results for the Peclet Number 

4.3.2.1 Effects of Undercooling 

The Peclet number as a function of the undercooling is presented in the 

logarithmic plots contained in Figures 4.17 and 4.18. Two predictions for the LB model 

are reported: the first one (continuous line) results from assuming a constant selection 

parameter ( 02.0* = )σ , while the other (white triangles) utilizes the measured selection 

parameter. In the LGK prediction (dashed line), the selection parameter is also assumed 

to be constant ( )02.0* =σ . For all concentrations studied the thermal Peclet number 

increases almost monotonically with the undercooling. Figure 4.17 shows that both LB 

model predictions agree outstandingly with the collected data along the entire range of 

undercooling studied ( )K 0.7K 1.0 ≤Δ≤ T , for low solute concentrations (0.1045 and 
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0.1710 mol. %). Conversely, an important disagreement between the experimental results 

and the LGK model can be appreciated for such concentrations. These findings suggest 

that the dendritic growth of alloys with low solute concentrations is controlled by 

convective effects. Moreover, the agreement between the current experiments and the LB 

model predictions indicates that such model accounts effectively for thermo-solutal 

convection. 

For higher solute concentrations (0.3065 and 0.4976 mol %), the transition 

towards the diffusive regime starts (Figure 4.18). The agreement between the 

measurements and the LGK predictions improves over the entire range of studied 

undercooling, but more strongly at high undercoolings. It is important to mention that the 

measurements of Peclet never fall below the prediction of the diffusion theory (LGK). 

This means that thermal and solutal boundary layers, indeed, cooperate with each other. 

Consequently, such important assumption of the LB model holds for the set of 

measurements presented here. Besides, this finding supports our claim that this 

measurements only correspond to dendrites growing downward. 

4.3.2.2 Effects of Solute Concentration 

In Figures 4.19 to 4.21, experimental and theoretical values of the thermal Peclet 

number are presented as functions of the solute concentration for all studied conditions. It 

is worthwhile to mention that the undercooling was not kept constant during the study of 

solutal effects. Because of that, some results can only be compared qualitatively with 

previous investigation. As usual, two predictions for the LB model are reported: the first 

one (continuous line) corresponds to a constant selection parameter ( )02.0* =σ , whereas 

the other (white triangles) utilizes the measured selection parameter. The LGK prediction 

(dashed line) results also from assuming a constant selection parameter ( )02.0* =σ . As 

most dendritic growth theories predict, the collected data indicate that the thermal Peclet 

number decreases monotonically with the solute concentration. In general the theoretical 
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predictions are within the uncertainty of the experiments. Also, the thermal Peclet 

number is independent of the selection parameter as the theories predict. With the 

exceptions of points for concentrations of 0.1045 and 0.1710 mol %, both LB predictions 

lay in top of each other. This agreement evidences the independence of the Peclet number 

from the selection parameter. Furthermore, the apparent deviations between the LB 

predictions for concentrations of 0.1045 and 0.1710 mol % are caused by differences in 

the undercoolings. In other words, LB predictions assuming constant selection parameter 

( 02.0* = )σ  correspond to undercoolings smaller than those for LB predictions using the 

measured selection parameter. 

These results indicate that the transport portion of the LB model can accurately 

estimate the heat and solute transfer during free dendritic solidification of alloys for all 

solute concentrations studied. Above 0.1710 mol %, diffusive effects start to take control 

of the solidification process and the experimental data deviates slightly from the LB 

prediction. The observed discrepancies between model predictions and experiments are in 

general within the reported uncertainties. However, further calibration of the LB models 

using the current experimental benchmark might be needed. 

4.3.3 Velocity Measurements 

4.3.3.1 Effects of Undercooling 

The tip velocity is presented as a function of the applied undercooling for each of 

the studied concentration in Figures 4.22 and 4.23. These plots have been formatted using 

the conventions presented before. These logarithmic charts show that the growth velocity 

increases monotonically with the undercooling. In previous analysis of the results, it was 

found that the LB model predicts more accurately the Peclet number for concentrations 

less or equal to 0.1710 mol%. Keeping that finding in mind, the results corresponding to 

concentrations below and above 0.1710 mol % are discussed separately. 
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For low solute concentrations ( )1710.00 ≤C , the velocity measurements exhibit 

good agreement with the LB prediction using a constant selection parameter for 

undercooling below 0.4 K. This finding indicates that the selection criterion of the LB 

model under predicts the stability constant ( )*σ  for undercooling above 0.4 K. A careful 

inspection to the LB predictions based on the measured selection parameter (Figure 4.22), 

taking into account that the velocity and the selection parameter are directly related, 

corroborates this hypothesis. The predicted velocities based on the measured stability 

constant are significantly smaller than our measurements for undercooling above 0.4 K. 

The adoption of a selection criterion similar to the one in the LKT model might help to 

prevent the under prediction of the stability constant. However, some additional 

modifications to this selection criterion might be needed because Ramirez et al.[103] 

reported that LKT correction to the stability constant were meaningless for Peclet 

numbers less or equal to 0.3. 

In the case of high solute concentrations ( )1710.00 ≥C , both Peclet number and 

selection parameter are over predicted by the LB model. This behavior recedes when pure 

diffusion conditions (higher undercooling) are achieved. The agreement between our 

measurements and the LB prediction based on the measured stability constant, for an 

undercooling of 0.7 K and concentrations of 0.3065 and 0.4976 mol %, illustrates this 

finding. For undercoolings below 0.7 K, the LB model over predicts the growth 

velocities. 

4.3.3.2 Effects of Solute Concentration 

Figures 4.24, 4.25 and 4.26 portray the tip velocity as a function of the solute 

concentration. Because of the variation in the undercoolings, it is difficult to observe the 

dependence of the tip velocity on the solute concentration. However, the main theoretical 

predictions can be corroborated at least qualitatively. It is evident from these figures that 

the growth velocity increases with the solute concentration, reaches a maximum for 
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solute concentrations between 0.1 and 0.2 mol %, and then decreases with further 

increments in the concentration. Such behavior is consequence of the competition 

between the rejection of solute and the latent heat release. While the diffusion of solute 

ahead of the interface retards the growth and destabilizes the tip, the dissipation of the 

latent heat speeds up the dendrite causing the observed maximum in the velocity. An 

analysis of the performance of the LB model can be conducted using Figures 4.24, 4.25 

and 4.26, however it will yield identical conclusions to those presented in the previous 

section  

4.3.4 Radius Measurements 

The dependence of the tip radius on the fitting range was studied in order to 

determine the suitability for alloys of the criterion adopted for measurement on pure SCN 

dendrites. Figure 4.27 portrays the tip radius and the coefficient  as function of the 

fitting range using a parabolic fit and a four order polynomial regression. This figure 

contains the results for pure SCN and SCN-Acetone alloy for undercoolings around 0.2 

K. In order to made this comparison as meaningful as possible, the alloy studied 

correspond to the solute concentration (0.1710 mol %) that produces the smallest 

dendrites observed 

4A

For pure SCN, it can be seen that the tip radius increases linearly with the fitting 

range when the parabolic fit is used. Conversely, the tip radius remains constant when the 

fourth order polynomial fit is used. For the alloy, the accumulation of error is less 

significant when the parabolic fit is used. Also the measurement using the fourth order 

regression is less stable than in the case of pure SCN. Moreover, the difference between 

in the radiuses for fitting ranges of 6 and 10 radii behind the tip is around 10%. This level 

of uncertainty in the radius is relatively high, because it translates into an uncertainty of 

20 % in the stability constant. However, such criterion was adopted also for alloys 

because of the excellent validation obtained for pure SCN. Figure 4.27b portrays the 
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coefficient of the 4th order non-axisymmetric term  as a function of the fitting range 

for pure SCN and SCN-Acetone dendrites. The data presented correspond to 

undercoolings around 0.2 K. It can be seen that our photos do not have enough resolution 

to allow the measurement of the coefficient  in alloys. 

4A

4A

Figures 4.28, 4.29 present comparisons among the actual dendrite shapes, the 

corresponding parabolas (red dots) and the non-axisymmetrical needle crystals (green 

dots) for all studied alloys. All comparisons were obtained for undercooling around 0.3 

K. The most accepted value for the coefficient of the 4th order non-axisymmetric term 

 was employed to draw the needle crystal contours. An outstanding 

agreement can be appreciated between the dendrite contours and the shapes proposed by 

the MST. This finding indicates that the MST might also be true for alloys. For the low 

solute concentrations (0.1045 and 0.1710 mol %), the first sidebranches seem to appear 

between 4 and 6 radii behind the tip. In the case of high solute concentrations (0.3064 and 

0.4976 mol %), the first sidebranches seem to appear between 6 and 8 radiuses behind the 

tip. These values are reported here just to provide a qualitative description. They can be 

misleading because the studied dendrites grew in different directions and the appearance 

of the sidebranches varies significantly depending on their orientation. .For all studied 

dendrites, the needle crystal approximation breaks down around 15 radii behind the tip 

because the same value of the coefficient of the 4th order non-axisymmetric term 

 was used to plot all non-axisymmetric needle crystals. 

( 004.04 =A )

)( 004.04 =A

4.3.4.1 Effects of Undercooling 

The tip radius measurements as a function of the applied undercooling are 

portrayed in the logarithmic plots contained in Figure 4.30 and 4.31. As expected, the tip 

radius is inversely related to the applied undercooling. This trend can also be appreciated 

through the set of micrographs presented in Figures 4.13, 4.14 and 4.15. For low solute 

concentrations (  mol %), the radius measurements exhibit some agreement 1710.00 ≥C
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with the LB prediction using the measured stability constant (Figure 4.30). These 

predictions are consistently bigger than our measurements, although most of them are 

enclosed by the uncertainty of the measurements. 

In the case of high solute concentrations (  mol %), the tip radius is 

under predicted by the LB model until pure diffusive regime (

1710.00 ≥C

7.0≥ΔT  K) is achieved. 

The agreement between our radius’s measurements and the LB prediction based on the 

measured stability constant, for an undercooling of 0.7 K and concentrations of 0.3065 

and 0.4976 mol %, illustrates this finding. 

4.3.3.2 Effects of Solute Concentration 

Figures 4.32, 4.33 and 4.34 portray the tip radius as a function of the solute 

concentration. It can be seen that, the tip radius decrease monotonically with the solute 

concentration. A minimum in the tip radius can be appreciated for concentrations 

between 0.1 and 0.2 mol %. Our measurements do not have enough resolution to locate 

such minimum. 

4.3.4 Sidebranching Morphology 

4.3.4.1 Dendrite Envelope 

Currently, the dendrite envelope and the integral parameter for dendritic 

sidebranching only have been reported for Xenon [13-15] and SCN [85-86]. 

Consequently, it is worthwhile to carry out those measurements for SCN-Acetone alloys. 

During the present investigation, four SCN-Acetone alloys were characterized. For each 

concentration dendrites grown under 6 different undercoolings were measured. The 

results in terms of the dendrite envelop are presented in Figure 4.35. The dendritic 

envelope for pure SCN dendrites and the non-axisymmetric needle crystal are presented 

in that figure. Li and Beckermann [85-86] obtained the following expression for the 

dendrite envelope: 

 



www.manaraa.com

 84

 
86.0

67.0 ⎟
⎠
⎞

⎜
⎝
⎛=

R
z

R
X act  (4.9) 

Our envelope for SCN-Acetone alloys, presented in Figure 4.35, is given by: 
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An outstanding agreement between terrestrial envelop for alloys and microgravity 

envelop for SCN can be appreciated. These envelopes meet the non-axisymmentrical 

needle crystal at different locations. The terrestrial envelop meets the needle crystal 

around 6 radii behind the tip; while the microgravity one collide with the needle crystal 

around 10 radii behind the tip. The microgravity sidebranching is slightly thicker that the 

terrestrial one. The solute rejection is responsible for the morphological differences in the 

sidebranches. Since the solutal boundary layer has a smaller thickness than the thermal 

boundary layer, the thermal noise amplification along the dendrite is bigger for alloys 

than for pure substance. 

4.3.4.2 Projection area 

Measurements for the normalized projection area carried out for Li and 

Beckermann [85-86] for the dendrites grown in microgravity during the IDGE flights 

[69] can be summarized by the following expression: 

 
72.1

2 58.0 ⎟
⎠
⎞

⎜
⎝
⎛=

R
z

R
F  (4.11) 

In Figure 4.36, our measurements of the normalized projection area for SCN-

Acetone alloys dendrites are presented along with Li’s results and the normalized 

projection area for a non-axisymmetric needle crystal. Our expression for the normalized 

projection area is given by: 
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The projection area of the alloys dendrites is slightly bigger than the projection 

area of microgravity pure SCN dendrites. The observed differences are within the 

uncertainty of our measurements 

4.3.4.3 Contour Length 

Li and Beckermann [85-86] also measured the contour length for the dendrites 

grown in microgravity during the IDGE flights [69] and reported the following 

expression: 
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Our measurements of the contour length for SCN-Acetone alloys dendrites are 

presented in Figure 4.37 along with Li’s results and the normalized projection area for a 

non-axisymmetric needle crystal. Our expression for the contour length is given by: 
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The contour length of alloys dendrites is slightly smaller than the contour length 

of microgravity dendrites. This difference is within the uncertainty of the measurements 

The agreement between the MST and our measurements of the side branching, in term of 

both the dendrite envelope and the integral parameter, indicates that the MST must be 

held true at some degree for alloys. Further research is needed to measured accurately the 

parameter  and the exact relationship between the selection parameter 4A *σ  and the 

anisotropy of the interfacial excess free-energy 
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 4.3.5 Eulerian Angle  

Appolaire et al.[126] investigated experimentally the settling of equiaxed 

dendritic crystal on an undercooled melts. They found a strong dependence of the 

selection parameter on the orientation of the crystal respect to the direction of settling 

(Eulerian angle). Such effect is not expected in our experiment because the flow induced 

by thermo-solutal natural convection is substantially slower than that created by the 

settling of the equiaxed crystal. Besides, Badillo et al.[127] recently showed 

experimentally that the selection parameter, based on the average velocity of the crystal 

settling down, is constant. However, some influence of the Eulerian angle on the Peclet 

numbers is expected, because the flow induced by the thermo-solutal natural convection 

goes always upward in the opposite direction to gravity. Consequently, the orientation of 

the dendrite will determine the shape of the boundary layers and the Peclet numbers. 

The histogram for the Eulerian angle is presented in Figure 4.38. Only 7 

experiments (6.36%) correspond to Eulerian angles bigger than 25 degrees. Also, about 

80% of the data correspond to angles between 10 and 25 degrees. Consequently, a weak 

dependence between the selection parameter and the Eulerian angle should be expected. 

Statistical test of correlation, in terms of the p-values and the Pearson coefficient, 

were carried out among the undercooling, the solute concentration, the thermal Peclet 

number, the selection parameter, and the Eulerian angle. These test show that there is 

some correlation between the Eulerian angle, the solute concentration and the Peclet 

number. In addition, the Eulerian angle and the Peclet number are inversely correlated. 

The dependence between this two variables is not too strong, the Pearson coefficient 

obtained (-0.393) indicates a less than linear relationship. As inferred from the histogram, 

there is no correlation between the Eulerian angle and the Eulerian angle. 
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 Table 4.1: Experimental benchmark for free dendritic growth in pure succinonitrile ( % mol. 0086.00 =C ). 
 

TΔ  
(K) 

V  
(μm/s) 

VΔ  
(μm/s) 

R  
(μm) 

RΔ  
(μm) 

 
TPe  

 
TPeΔ  

 
*σ  

 
*σΔ  

 
4A  

 
4AΔ  

θ  
(deg) 

0.100 3.2945 0.8208 93.9394 1.5875 0.00136 0.000341 0.02192 0.00587 0.00392 0.00017 13.36 
0.200 10.6374 1.7263 51.4753 0.0806 0.00241 0.000392 0.02261 0.00377 0.00387 0.00021 15.70 
0.300 23.1978 2.6235 36.5180 0.1671 0.00374 0.000423 0.02060 0.00237 0.00386 0.00020 9.93 
0.400 39.8224 4.7183 27.6577 0.2227 0.00486 0.000577 0.02092 0.00254 0.00393 0.00028 7.15 
0.500 60.0158 4.9894 23.6692 0.6574 0.00626 0.000549 0.01895 0.00191 0.00392 0.00054 6.23 
0.600 84.0679 3.6002 19.7989 0.7119 0.00734 0.000410 0.01934 0.00162 0.00425 0.00040 6.76 
0.700 114.6550 4.4511 18.3752 0.6712 0.00929 0.000495 0.01646 0.00137 - - 25.37 
0.800 148.0985 13.3487 16.2212 0.6097 0.01059 0.001034 0.01635 0.00193 - - 19.95 
0.900 179.2028 5.9471 14.7297 1.1656 0.01164 0.000999 0.01639 0.00268 - - 6.11 
1.000 234.6455 12.0863 13.0342 1.3618 0.01349 0.001571 0.01599 0.00351 - - 15.25 
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 Table 4.2: Experimental benchmark for free dendritic growth in succinonitrile acetone alloys ( % mol. 1045.00 =C ). 
 

TΔ  
(K) 

V  
(μm/s) 

VΔ  
(μm/s) 

R  
(μm) 

RΔ  
(μm) 

 
Pe  

 
TPeΔ  

 
*σ  

 
*σΔ  

θ  
(deg) 

0.125 4.8896 0.1604 45.4662 0.9288 0.00098 0.000038 0.02024 0.00112 15.88 
0.225 15.7563 0.2752 26.2866 1.2808 0.00183 0.000095 0.01763 0.00186 12.83 
0.325 31.7281 0.8163 18.5179 2.0920 0.00259 0.000300 0.01683 0.00423 17.47 
0.425 56.4301 1.3984 14.1710 2.1005 0.00353 0.000530 0.01537 0.00522 17.86 
0.525 88.9393 3.0985 11.7355 1.7359 0.00460 0.000699 0.01352 0.00465 12.57 
0.725 169.0321 8.8911 8.5894 2.0340 0.00640 0.001553 0.01236 0.00747 8.75 
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 Table 4.3: Experimental benchmark for free dendritic growth in succinonitrile acetone alloys ( % mol. 1710.00 =C ). 
 

TΔ  
(K) 

V  
(μm/s) 

VΔ  
(μm/s) 

R  
(μm) 

RΔ  
(μm) 

 
Pe  

 
TPeΔ  

 
*σ  

 
*σΔ  

θ  
(deg) 

0.141 7.2179 0.1641 31.7028 2.4653 0.001009 0.000082 0.01962 0.003278 18.42 
0.241 18.1527 1.4347 20.2915 2.3201 0.001624 0.000226 0.01805 0.004801 19.98 
0.341 38.1446 2.8168 14.2361 1.9189 0.002394 0.000368 0.01650 0.005196 19.36 
0.441 60.3046 2.3649 12.0906 1.1864 0.003215 0.000340 0.01375 0.003081 17.35 
0.541 88.5782 4.7361 10.6116 1.3061 0.004144 0.000556 0.01155 0.003337 15.45 
0.741 160.4276 11.8061 8.0049 1.4185 0.005662 0.001086 0.01043 0.004558 11.12 
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 Table 4.4: Experimental benchmark for free dendritic growth in succinonitrile acetone alloys ( % mol. 3065.0C0 = ). 
 

TΔ  
(K) 

V  
(μm/s) 

VΔ  
(μm/s) 

R  
(μm) 

RΔ  
(μm) 

 
Pe  

 
TPeΔ  

 
*σ  

 
*σΔ  

θ  
(deg) 

0.200 6.1726 0.3271 26.6432 1.3303 0.00073 0.000053 0.02077 0.00249 14.62 
0.300 16.1517 0.2128 17.5123 2.1917 0.00125 0.000157 0.01736 0.00477 16.44 
0.400 30.1691 0.6707 12.8694 1.5450 0.00171 0.000209 0.01649 0.00440 15.81 
0.500 46.7873 3.0531 10.5221 1.9165 0.00217 0.000420 0.01532 0.00661 18.53 
0.700 94.6685 4.5391 8.0950 1.0552 0.00338 0.000469 0.01177 0.00359 19.07 
0.800 119.2196 3.6698 6.3416 1.0855 0.00333 0.000580 0.01528 0.00619 20.23 
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TΔ  
(K) 

V  
(μm/s) 

VΔ  
(μm/s) 

R  
(μm) 

RΔ  
(μm) 

 
Pe  

 
TPeΔ  

 
*σ  

 
*σΔ  

θ  
(deg) 

0.300 11.2005 0.3152 17.1887 0.9410 0.00085 0.000052 0.01764 0.00212 32.70 
0.400 21.3487 2.2474 11.9534 0.7129 0.00113 0.000136 0.01854 0.00324 36.15 
0.500 31.7273 0.7250 10.1008 1.5394 0.00141 0.000218 0.01696 0.00583 23.55 
0.700 62.5460 2.5334 8.0556 1.5352 0.00222 0.000433 0.01260 0.00569 35.54 
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 Table 4.5: Experimental benchmark for free dendritic growth in succinonitrile acetone alloys ( % mol. 4976.0C0 = ). 
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Figure 4.1: Micrographs of almost pure SCN dendrites ( )% mol. 0086.00 =C   
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Figure 4.2: Measurements of the selection parameter ( )*σ  as a function of the 
undercooling for almost pure SCN ( )% mol. 0086.00 =C  

(a) Comparison with 02.0*=σ  
(b) Comparison with the experimental benchmark by Glicksman et al. 
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Figure 4.3: Measurements of the thermal Peclet number as a function of the undercooling 
for almost pure SCN . ( )% mol 0086.00 =C
 (a) Comparison with the existing theoretical models. 
 (b) Comparison with the experimental benchmark by Glicksman et al. 
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Figure 4.4: Measurements of the tip velocities as a function of the undercooling for 
almost pure SCN . ( )% mol. 0086.00 =C
 (a) Comparison with the existing theoretical models 
 (b) Comparison with the experimental benchmark by Glicksman et al. 
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Figure 4.5: Tip measurements as a function of the fitting range for almost pure SCN 
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Figure 4.6: Verification of the MST for almost pure SCN ( % mol. 0086.00 =C .& 

 )K 300.0Δ =T
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Figure 4.7: Tip radius measurements as a function of the undercooling for almost pure 
SCN ( ) . % mol. 0086.00 =C
 (a) Comparison with the existing theoretical models 
 (b) Comparison with the experimental benchmark by Glicksman et al. 
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Figure 4.8: Tip radius measurements as a function of the undercooling for almost pure 
SCN ( ) . % mol. 0086.00 =C
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Figure 4.10: Projection area as a function of the longitudinal distance from tip for almost 
pure SCN . ( )% mol. 0086.00 =C
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Figure 4.11: Contour length as a function of the longitudinal distance from tip for almost 
pure SCN . ( )% mol. 0086.00 =C



www.manaraa.com

 103

 
 
 
 
 
 
 
 
 
 
 
 
 1.0 mm 1.0 mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: Micrographs of SCN-ACE dendrites ( )% mol. 1045.00 =C . 
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Figure 4.13: Micrographs of SCN-ACE dendrites ( )% mol. 1710.00 =C . 
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Figure 4.14: Micrographs of SCN-ACE dendrites ( )% mol. 3065.00 =C . 
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Figure 4.15: Micrographs of SCN-ACE dendrites ( )% 0.4976.0 =C . 
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Figure 4.16: Measurements of the selection parameter ( )*σ  as a function of the 
undercooling for SCN-Acetone alloys. 
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Figure 4.17: Measurements of the thermal Peclet number as a function of the 
undercooling for SCN-Acetone alloys. 
 (a) . % mol 1045.00 =C
 (b) . % mol 1710.00 =C
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Figure 4.18: Measurements of the thermal Peclet number as a function of the 
undercooling for SCN-Acetone alloys. 
 (a) . % mol 3065.00 =C
 (b) . % mol 4976.00 =C
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(b) 

Figure 4.19: Measurements of the thermal Peclet number as a function of the solute 
concentration for SCN-Acetone alloys. 
 (a) . K 100.0≈ΔT
 (b). . K 200.0≈ΔT
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Figure 4.20: Measurements of the thermal Peclet number as a function of the solute 
concentration for SCN-Acetone alloys. 
 (a) . K 300.0≈ΔT
 (b). . K 400.0≈ΔT
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(b) 

Figure 4.21: Measurements of the thermal Peclet number as a function of the solute 
concentration for SCN-Acetone alloys. 
 (a) . K 500.0≈ΔT
 (b). . K 700.0≈ΔT
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Figure 4.22: Measurements of the tip velocity as a function of the undercooling for SCN-
Acetone alloys. 
 (a) . % mol 1045.00 =C
 (b) . % mol 1710.00 =C
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Figure 4.23: Measurements of the tip velocity as a function of the undercooling for SCN-
Acetone alloys. 
 (a) . % mol 3065.00 =C
 (b) . % mol 4976.00 =C
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Figure 4.24: Measurements of the tip velocity as a function of the solute concentration for 
SCN-Acetone alloys. 
 (a) . K 100.0≈ΔT
 (b). . K 200.0≈ΔT
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Figure 4.25: Measurements of the tip velocity as a function of the solute concentration for 
SCN-Acetone alloys. 
 (a) . K 300.0≈ΔT
 (b). . K 400.0≈ΔT
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Figure 4.26: Measurements of the tip velocity as a function of the solute concentration for 
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Figure 4.28: Verification of the MST for SCN-Acetone alloys. 
 (a)  & % mol 1045.00 =C K 325.0=ΔT . 
 (b).  & % mol 1710.00 =C K 341.0=ΔT . 
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Figure 4.29: Verification of the MST for SCN-Acetone alloys. 
 (a)  & % mol 3065.00 =C K 300.0=ΔT . 
 (b).  & % mol 4976.00 =C K 300.0=ΔT . 
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Figure 4.30: Measurements of the tip radius as a function of the undercooling for SCN-
Acetone alloys. 
 (a) . % mol 1045.00 =C
 (b) . % mol 1710.00 =C
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Figure 4.31: Measurements of the tip radius as a function of the undercooling for SCN-
Acetone alloys. 
 (a) . % mol 3065.00 =C
 (b) . % mol 4976.00 =C
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Figure 4.32: Measurements of the tip radius as a function of the solute concentration for 
SCN-Acetone alloys. 
 (a) . K 100.0≈ΔT
 (b). . K 200.0≈ΔT
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Figure 4.33: Measurements of the tip radius as a function of the solute concentration for 
SCN-Acetone alloys. 
 (a) . K 300.0≈ΔT
 (b). . K 400.0≈ΔT



www.manaraa.com

 125

 

Solute Concentration, C0 (mol. %)

Ti
p

R
ad

iu
s,

R
(μ

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

LB Model (σ* = 0.02)
LGK Model (σ* = 0.02)
LB Model using measured σ* & ΔT
Measurements

ΔT = 0.525 ± 0.010 K
ΔT = 0.541 ± 0.015 K

ΔT = 0.500 K

ΔT = 0.500 ± 0.002 K

ΔT = 0.500 ± 0.015 K

(a)  

Solute Concentration, C0 (mol. %)

Ti
p

R
ad

iu
s,

R
(μ

m
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

LB Model (σ* = 0.02)
LGK Model (σ* = 0.02)
LB Model using measured σ* & ΔT
Measurements

ΔT = 0.725 ± 0.010 K

ΔT = 0.741 ± 0.015 K

ΔT = 0.700K

ΔT = 0.700 ± 0.002 K

ΔT = 0.700 ± 0.015 K

(b)  
Figure 4.34: Measurements of the tip radius as a function of the solute concentration for 
SCN-Acetone alloys. 
 (a) . K 500.0≈ΔT
 (b). . K 700.0≈ΔT
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Figure 4.35: Dendrite’s envelope as a function of the longitudinal distance from tip for 
SCN-Acetone alloys. 
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Figure 4.36: Projection area as a function of the longitudinal distance from tip for SCN-
Acetone alloys. 
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Figure 4.37: Contour length as a function of the longitudinal distance from tip for almost 
for SCN-Acetone alloys. 
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Figure 4.38: Histogram of the Eulerian angle ( )θ  for all dendrites studied. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Current achievements of the present experimental investigation can be 

summarized as follows: 

• A new experimental benchmark containing measurements of growth 

velocity, tip radius, Peclet number, selection parameter, and the coefficient 

4A  for pure succinonitrile has been provided. The outstanding agreement 

observed between these measurements and the existing theoretical, 

numerical and experimental investigation of dendritic growth validates the 

experimental methodology proposed. 

•  A similar benchmark for succinonitrile-acetone alloys has been obtained. 

Results validate the transport portion of the model for free dendritic 

growth of succinonitrile-acetone alloys proposed by Li and Beckermann 

[78]. 

• Experiments provide accurate dendrite tip velocity and radius data for 

dilute SCN-acetone alloys. Tip velocity maximum at small solute 

concentration is verified by measurements. 

• Tip growth Péclet number is well predicted by modified LGK model that 

accounts for thermosolutal convection (LB model [78]). 

• The measurements of the selection parameter, *σ , for pure succinonitrile 

exhibit an inverse dependence on the applied undercooling. This finding 

challenges the common assumption that the selection parameter is 

constant. 

• In analogous fashion, the selection parameter for succinonitrile-acetone 

alloys shows a strong inverse dependence on the applied undercooling  In 

addition, *σ  approaches value for pure SCN (0.02) at lo undercoolings. 
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Consequently, most selection criteria for alloys are questioned by this 

finding.  

• Scaling relationships for the sidebranching shape were obtained for 

succinonitrile-acetone alloys in terms of the dendritic envelope, projection 

area and contour length. These new scaling relations agree well with 

previous measurements in pure succinonitrile dendrites by Li and 

Beckermann. 

 Experimental data for alloys with a higher concentration of acetone 

( % ) would be very useful for validating phase field simulations. Such data 

can be obtained using the EDSE setup if the following improvements are carried out: 

 mol. 5.00 >C

• Acquiring a monochrome progressive scan CCD camera with higher 

resolution in order to measure smaller dendrites resulting from 

experiments at bigger solute concentrations. 

• Installing the cameras on new supports with a bigger range of motion. 

This improvement will increase the cameras field of view during the 

experiments. 

• Installing more powerful thermo-electrical coolers in order to initiate the 

dendritic growth at higher solute concentrations. 

• Designing and building a new support for the growth chamber that allows 

an easier alignment of the dentrite’s ridges with the normal vector to the 

cameras’ planes of view. 
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APPENDIX A 

MELTING POINT MEASUREMENT 

In order to measure the melting point of alloys, some solid must be created inside 

the chamber and melted away at the lowest temperature possible. The specific process 

employed is as follows: 

 

• All the material in the chamber is completely melted by setting the bath 

temperature at 58.9°C. 

• Then the bath temperature is set at the previous known melting point. 

• Once the thermal equilibrium is reached, the solid is formed by cooling 

the chamber wall with water at room temperature. The solid is created by 

removing the growth chamber for the isothermal, rapidly submerging the 

bottom of the chamber in a Petri dish filled with water at room 

temperature, and returning the chamber to the isothermal bath. Using this 

technique a roughly semi-spherical layer of solid is obtained. 

• The color video CCD camera is used to monitor the interface, which is 

traced on the TV screen with whiteboard marker to monitor its evolution. 

• Next, the temperature in the chamber is decreased in 10 milli-Kelvin 

increments until the solid is observed to grow. 

• Then, the bath temperature is then increased in 10 milli-Kelvin increments 

until it is observed that the solid begins to recede. After each modification 

of the bath temperature, the system is allowed to reach thermal 

equilibrium. Generally, a lapse of two hours is enough to ensure thermal 

equilibrium inside the growth chamber. 

• If the entire solids melt away, then the current temperature setting exceeds 

the liquidus temperature and this process is started over. Otherwise, the 
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temperature is increased an additional 10 milli-Kelvin after the interface 

has become stable. This process is repeated until the level of solid in the 

chamber becomes very small (Figure A.1). 

•  At this point, the previous step is repeated but using increments of 3 milli-

Kelvins. 

• The temperature at which the last solid melts away corresponds to the 

liquidus temperature. 
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Figure A.1: Level of solid from which the temperature increments are reduced to 3 milli-

Kelvins 
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